
IOI’95 Task Solution BARS (p. 1 of 4)

Analysis

For small parameter values, it is straightfor-
ward to generate all symbols, to count them,
and to put them into a table for decoding.
One way to do so is to go through all bit vec-
tors with n bits and store the ones that match
the criteria of BC(n, k, m). Decoding can be
done by a linear search in the table, but since
the table is sorted, a binary search generally
works faster.

It is also possible to generate the symbols
more directly (without considering ‘invalid’
bit patterns). Given a symbol’s bit pattern it
is not too difficult to construct the next one (if
it exists).

Counting symbols

A recursive generator, however, is easier to
describe. For that purpose, it is convenient
to consider the ‘run’ vector of a symbol that
gives the width of each bar in the symbol.
The run vector of the symbol in Figure 1 of
the task description is 1231. Procedure call
CountBC(n, k) adds the number of symbols in
BC(n, k, m) to global variable t:

var t: longint;

procedure CountBC(p, q: integer);

var i: integer;

begin

if (p > 0) and (q > 0) then

for i := 1 to m do

CountBC(p-i, q-1)

else

if (p = 0) and (q = 0) then

t := t + 1

end { CountBC } ;

...

readln(n, k, m) ; t := 0 ;

CountBC(n, k)

{ t = size of BC(n, k, m) }

In the for-loop, the value of i is the width of
bar k− q + 1 (the leftmost bar when q = k). It

can be recorded in a global variable to gener-
ate the symbols. However, the symbols are
not generated in the desired order, since the
groups of ‘0’s (light bars) now go from nar-
row to wide instead of the other way round.
This is repaired by replacing the for-loop by

if odd(k-q+1) then

for i := 1 to m do

CountBC(p-i, q-1)

else

for i := m downto 1 do

CountBC(p-i, q-1)

The speed of the procedure can be improved
by restricting i to a smaller range whenever
possible. A lower bound on i is obtained
by observing that the maximum number of
modules covered by the remaining q− 1 bars
equals (q−1)∗m. Therefore, i must be at least
n − (q − 1) ∗ m. Considering the minimum
width of q − 1 bars yields an upper bound,
viz. n− (q− 1). That way, also negative val-
ues for p are avoided.

Decoding symbols

All symbols in the bar code can first be gen-
erated and stored in a table, which is subse-
quently searched for decoding. However, it
seems better to start by sorting the message
symbols to be decoded (duplicates compli-
cate this a little bit), and then to generate all
symbols and decode the message ‘on-the-fly’.
The decoded list is finally written in the orig-
inal order.

Efficiency considerations

All this, however, should be preceded by an
analysis of how many symbols there can be in
a bar code. We get an upper bound by forget-
ting about parameter m, or—what comes to
the same thing—by taking m = n. In that case,
it is easy to count the number of symbols, be-
cause each symbol is obtained by distribut-
ing k − 1 dividers over the n − 1 boundaries
between modules (at most one divider per

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution BARS (p. 2 of 4)

boundary). Therefore, the size of BC(n, k, n)
equals

(n−1
k−1

)
. The maximum size, thus, is

(32
16

)
which equals 601,080,390. This is obviously
not within reach of procedure CountBC.

Efficient counting

Observe that CountBC makes many recursive
calls with the same parameter pairs (p, q). The
number of pairs, however, is at most some-
thing on the order of n ∗ k. Hence, it seems
wise to think of dynamic programming and
to make a table t[p, q] to store the size of
BC(p, q, m) with 0 ≤ p ≤ n and 0 ≤ q ≤ k. The
table for BC(7, 4, 3) is as follows:

p q→
↓ 0 1 2 3 4
0 1 0 0 0 0
1 0 1 0 0 0
2 0 1 1 0 0
3 0 1 2 1 0
4 0 0 3 3 1
5 0 0 2 6 4
6 0 0 1 7 10
7 0 0 0 6 16

This table can also be filled iteratively. In
fact, the following recurrence relation is not
so hard to derive:

t[p, q] = 1, if p = 0 and q = 0
t[p, q] = 0, if p 6= 0 and q ≤ 0
t[p, q] = 0, if p ≤ 0 and q 6= 0

t[p, q] =
m∑

i=1

t[p− i, q− 1],

if p > 0 and q > 0.

The sum can be eliminated by observing that

t[p, q] = t[p− 1, q]
+ t[p− 1, q− 1]
− t[p−m− 1, q− 1];

if p > 0 and q > 0:

Here is a procedure to do the filling:

var

t: array[0..33, 0..33] of longint;

procedure FillTable;

var p, q: integer; s: longint;

begin

for q := 0 to k do begin

if q = 0 then t[0, q] := 1

else { q > 0 } t[0, q] := 0 ;

for p := 1 to n do begin

if q = 0 then t[p, q] := 0

else { p > 0 and q > 0 } begin

if p < m+1 then s := 0

else s := t[p-m-1, q-1] ;

t[p, q] := t[p, q-1] +

t[p-1, q-1] - s

end { else }

end { for p }

end { for q }

end { FillTable } ;

...

readln(n, k, m) ; FillTable

{ t[n, k] = size of BC(n, k, m) }

Efficient decoding

Once this table is constructed it can also be
used for efficient decoding (without generat-
ing all the symbols in a bar code). Observe
that the rank of a symbol equals the num-
ber of symbols preceding it. Using the table
one can count how many symbols precede a
given symbol. This is most easily carried out
in terms of run vectors. First we present a
procedure for reading a bit vector and storing
it as a run vector:

type

runvec = array [1..33] of integer;

procedure ReadSymbol(var rv: runvec);

var b, i, j: integer; c: char;

begin

j := 0 ; { bar index }

for i := 0 to n do begin

read(c) ;

b := ord(c) - ord('0') ;

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution BARS (p. 3 of 4)

{ b = 0 or b = 1 }

if b <> j mod 2 then begin

j := j + 1 ;

rv[j] := 1

end { then }

else

rv[j] := rv[j] + 1

end { for i } ;

readln

end { ReadSymbol } ;

As an example we consider how to decode
bit vector 1101100, that is run vector 2122, in
BC(7, 4, 3). Here is the list of all run vectors in
BC(7, 4, 3):

0: 1312 8: 2212
1: 1320 9: 2220
2: 1213 10: 2113
3: 1222 11: 2122
4: 1231 12: 2131
5: 1123 13: 3211
6: 1132 14: 3112
7: 2311 15: 3121

The symbols preceding 2122 in the list have
been divided into three blocks. The first block
consists of all (seven) run vectors with a first
run that is strictly less than the first run of
2122. In this case there is only one such
run, namely 1, and this block consists of all
run vectors starting with 1. The block size
equals the number of symbols with 7− 1 = 6
modules and 4 − 1 = 3 bars. Therefore, its
size computed as the number of symbols in
BC(6, 3, 3), which we can look up in the pre-
computed table: t[6, 3] = 7.

The second block consists of all preceding
vectors that are equal to 2122 for the first run
and whose second run is strictly bigger than
the second run of 2122 (bigger because light
bars are ordered in the opposite direction). In
this case there are two such runs, namely 3
and 2. The block consists of all run vectors
starting with 23 and 22, and continuing with
4 − 2 = 2 bars over either 7 − 5 = 2 or 7 −
4 = 3 modules. Therefore, its size is com-
puted as the number of symbols in BC(2, 2, 3)

and BC(3, 2, 3). According to the table this is
t[2, 2] + t[3, 2] = 1 + 2 = 3.

In general, when decoding run vector rv
with k bars, the run vectors preceding it are
divided into k blocks. Block q consists of all
run vectors that are equal to rv in the first
q− 1 positions and whose q-th run is strictly
less (for light bars, more) than that of rv. The
sizes of these blocks are obtained by adding
suitable entries from the precomputed table t.
Note that block k is always empty.

Here is a procedure for decoding a run vec-
tor:

procedure Decode(rv: runvec;

var r: longint);

var p, q, i: integer;

begin

p := n ; r := 0 ;

{ p = # remaining modules }

{ r = size of first q blocks }

for q := 1 to k-1 do begin

if odd(q) then begin

for i := 1 to rv[q]-1 do

if i <= p then

r := r + t[p-i, k-q]

end { then }

else begin

for i := rv[q]+1 to m do

if i <= p then

r := r + t[p-i, k-q]

end { else } ;

p := p - rv[q]

end { for q }

end { Decode } ;

Variations

Produce the list of all symbols in a given bar
code (in that case, the parameters must be
further restricted, because otherwise the out-
put could be too large). Produce the symbol
with largest rank in a given bar code. Given a
bar code and a rank, produce the correspond-
ing symbol. Given a bar code and a symbol
(not the last one), produce the next symbol.
The ordering could be done differently, e.g.

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution BARS (p. 4 of 4)

by considering the run vectors. The upper
bound on the width of bars could differ for
dark and light bars. There can also be a lower
bound on the width of bars, possibly depend-
ing on the color as well.

As a simple starter we could also ask for the
width of a narrowest and a widest bar in any
symbol of BC(n, k, m). This can easily be de-
rived without generating all symbols. Note
that it is not always 1 and m respectively.

Given two bar codes BC1 and BC2 such that
the second contains no fewer symbols than
the first. Write a program to convert symbols
in the first bar code to corresponding symbols
(with the same rank) in the second code.

Motivations and Judging

The upper bound of 33 on n, k, and m yields
bar-code sizes within the range of 32-bit inte-
gers. This also holds for 34, but not for 35. We
have choosen 33 instead of 32 in order not to
seduce competitors to pack bit vectors in 32-
bit variables.

In general, we will test for correct order-
ing of widths of both dark bars and light
bars. However, we will also include a test
case where only the symbols with lowest and
highest rank are to be decoded. This allows
programs that do not get the order right to
score points as well.

We will include a test where the message
(list of symbols to be decoded) is reverse
sorted. We will also include a bar code in
which the minimum bar width does not ac-
tually occur; similarly for maximimum bar
width.

We will include test input allowing ap-
proaches that generate all symbols, either by
considering all bit patterns and filtering, or
more directly. There will also be test input
where these approaches will fail, hopefully
one by one, as the sizes are increased. Spe-
cial cases are those where there is only one
symbol, with all bars of minimal or maximal
width. Another special case is an empty bar

code.
The very best competitors should be able to

count and decode up to the maximum values.
We also include a test case with large parame-
ters for which the bar code is empty. This can
also be relatively easily detected.

Tom Verhoeff
Scientific Committee IOI’95

7th International Olympiad in Informatics Eindhoven, NL


