Problem 1

Let n be a positive integer. Let T be the set of points (x, y) in the plane where x and y are non-negative integers and x + y < n. Each point of T is coloured red or blue. If a point (x, y) is red, then so are all points (x', y') of T with both $x' \le x$ and $y' \le y$. Define an X-set to be a set of n blue points having distinct x-coordinates, and a Y-set to be a set of n blue points having distinct y-coordinates. Prove that the number of X-sets is equal to the number of Y-sets.

Problem 2

Let BC be a diameter of the circle Γ with centre O. Let A be a point on Γ such that $0^{\circ} < \angle AOB < 120^{\circ}$. Let D be the midpoint of the arc AB not containing C. The line through O parallel to DA meets the line AC at J. The perpendicular bisector of OA meets Γ at E and at F. Prove that J is the incentre of the triangle CEF.

Problem 3

Find all pairs of integers $m, n \ge 3$ such that there exist infinitely many positive integers a for which

$$\frac{a^m + a - 1}{a^n + a^2 - 1}$$

is an integer.

Problem 4

Let n be an integer greater than 1. The positive divisors of n are d_1, d_2, \ldots, d_k where $1 = d_1 < d_2 < \cdots < d_k = n$.

Define $D = d_1 d_2 + d_2 d_3 + \cdots + d_{k-1} d_k$.

- (a) Prove that $D < n^2$.
- (b) Determine all n for which D is a divisor of n^2 .

Problem 5

Find all functions f from the set r of real numbers to itself such that

$$(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all x, y, z, t in r.

Problem 6

Let $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$ be circles of radius 1 in the plane, where $n \ge 3$. Denote their centres by O_1, O_2, \ldots, O_n respectively. Suppose that no line meets more than two of the circles. Prove that

$$\sum_{1 \le i < j \le n} \frac{1}{O_i O_j} \le \frac{(n-1)\pi}{4}.$$