Problem 1

Let n be a positive integer. Let T be the set of points (x, y) in the plane where x and y are non-negative integers and $x+y<n$. Each point of T is coloured red or blue. If a point (x, y) is red, then so are all points $\left(x^{\prime}, y^{\prime}\right)$ of T with both $x^{\prime} \leq x$ and $y^{\prime} \leq y$. Define an X-set to be a set of n blue points having distinct x-coordinates, and a Y-set to be a set of n blue points having distinct y-coordinates. Prove that the number of X-sets is equal to the number of Y-sets.

Problem 2

Let $B C$ be a diameter of the circle Γ with centre O. Let A be a point on Γ such that $0^{\circ}<\angle A O B<120^{\circ}$. Let D be the midpoint of the arc $A B$ not containing C. The line through O parallel to $D A$ meets the line $A C$ at J. The perpendicular bisector of $O A$ meets Γ at E and at F. Prove that J is the incentre of the triangle $C E F$.

Problem 3

Find all pairs of integers $m, n \geq 3$ such that there exist infinitely many positive integers a for which

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is an integer.

Problem 4

Let n be an integer greater than 1. The positive divisors of n are $d_{1}, d_{2}, \ldots, d_{k}$ where $1=d_{1}<d_{2}<\cdots<d_{k}=n$.
Define $D=d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$.
(a) Prove that $D<n^{2}$.
(b) Determine all n for which D is a divisor of n^{2}.

Problem 5

Find all functions f from the set r of real numbers to itself such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all x, y, z, t in r .

Problem 6

Let $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ be circles of radius 1 in the plane, where $n \geq 3$. Denote their centres by $O_{1}, O_{2}, \ldots, O_{n}$ respectively. Suppose that no line meets more than two of the circles. Prove that

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4}
$$

