42nd International Mathematical Olympiad

Washington, DC, United States of America July 8–9, 2001

Problems

Each problem is worth seven points.

Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.

Suppose that $\angle BCA \ge \angle ABC + 30^{\circ}$.

Prove that $\angle CAB + \angle COP < 90^{\circ}$.

Problem 2

Prove that

$$\frac{a}{\sqrt{a^2 + 8 b c}} + \frac{b}{\sqrt{b^2 + 8 c a}} + \frac{c}{\sqrt{c^2 + 8 a b}} \ge 1$$

for all positive real numbers a, b and c.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Problem 4

Let *n* be an odd integer greater than 1, and let $k_1, k_2, ..., k_n$ be given integers. For each of the *n*! permutations $a = (a_1, a_2, ..., a_n)$ of 1, 2, ..., n, let

$$S(a) = \sum_{i=1}^{n} k_i a_i.$$

Prove that there are two permutations b and c, $b \neq c$, such that n! is a divisor of S(b) - S(c).

Problem 5

In a triangle ABC, let AP bisect $\angle BAC$, with P on BC, and let BQ bisect $\angle ABC$, with Q on CA.

It is known that $\angle BAC = 60^{\circ}$ and that AB + BP = AQ + QB.

What are the possible angles of triangle *ABC*?

Problem 6

Let a, b, c, d be integers with a > b > c > d > 0. Suppose that

a c + b d = (b + d + a - c) (b + d - a + c).

Prove that a b + c d is not prime.

Problems with Solutions

Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.

Suppose that $\angle BCA \ge \angle ABC + 30^{\circ}$.

Prove that $\angle CAB + \angle COP < 90^{\circ}$.

Solution

Solution 1

Let $\alpha = \angle CAB$, $\beta = \angle ABC$, $\gamma = \angle BCA$, and $\delta = \angle COP$. Let *K* and *Q* be the reflections of *A* and *P*, respectively, across the perpendicular bisector of *BC*. Let *R* denote the circumradius of $\triangle ABC$. Then OA = OB = OC = OK = R. Furthermore, we have QP = KA because KQPA is a rectangle. Now note that $\angle AOK = \angle AOB - \angle KOB = \angle AOB - \angle AOC = 2\gamma - 2\beta \ge 60^\circ$.

It follows from this and from OA = OK = R that $KA \ge R$ and $QP \ge R$. Therefore, using the Triangle Inequality, we have $OP + R = OQ + OC > QC = QP + PC \ge R + PC$. It follows that OP > PC, and hence in $\triangle COP$, $\angle PCO > \delta$. Now since $\alpha = \frac{1}{2} \angle BOC = \frac{1}{2} (180^{\circ} - 2 \angle PCO) = 90^{\circ} - \angle PCO$, it indeed follows that $\alpha + \delta < 90^{\circ}$.

Solution 2

As in the previous solution, it is enough to show that OP > PC. To this end, recall that by the (Extended) Law of Sines, $AB = 2R\sin\gamma$ and $AC = 2R\sin\beta$. Therefore, we have

$$BP - PC = AB\cos\beta - AC\cos\gamma = 2R(\sin\gamma\cos\beta - \sin\beta\cos\gamma) = 2R\sin(\gamma - \beta).$$

It follows from this and from

$$30^{\circ} \le \gamma - \beta < \gamma < 90^{\circ}$$

that $BP - PC \ge R$. Therefore, we obtain that $R + OP = BO + OP > BP \ge R + PC$, from which OP > OC, as desired.

Solution 3

We first show that $R^2 > CP \cdot CB$. To this end, since $CB = 2R\sin\alpha$ and $CP = AC\cos\gamma = 2R\sin\beta\cos\gamma$, it suffices to show that $\frac{1}{4} > \sin\alpha\sin\beta\cos\gamma$. We note that $1 > \sin\alpha = \sin(\gamma + \beta) = \sin\gamma\cos\beta + \sin\beta\cos\gamma$ and $\frac{1}{2} \le \sin(\gamma - \beta) = \sin\gamma\cos\beta - \sin\beta\cos\gamma$ since $30^\circ \le \gamma - \beta < 90^\circ$. It follows that $\frac{1}{4} > \sin\beta\cos\gamma$ and that $\frac{1}{4} > \sin\alpha\sin\beta\cos\gamma$.

Now we choose a point *J* on *BC* so that $CJ \cdot CP = R^2$. It follows from this and from $R^2 > CP \cdot CB$ that CJ > CB, so that $\angle OBC > \angle OJC$. Since OC/CJ = PC/CO and $\angle JCO = \angle OCP$, we have $\triangle JCO \cong \triangle OCP$ and $\angle OJC = \angle POC = \delta$. It follows that $\delta < \angle OBC = 90^\circ - \alpha$ or $\alpha + \delta < 90^\circ$.

Solution 4

On the one hand, as in the third solution, we have $R^2 > CP \cdot CB$. On the other hand, the power of P with respect to the circumcircle of $\triangle ABC$ is $BP \cdot PC = R^2 - OP^2$. From these two equations we find that

$$OP^2 = R^2 - BP \cdot PC > PC \cdot CB - BP \cdot PC = PC^2,$$

from which OP > PC. Therefore, as in the first solution, we conclude that $\alpha + \delta < 90^{\circ}$.

Problem 2

Prove that

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1$$

for all positive real numbers a, b and c.

Solution

First we shall prove that

$$\frac{a}{\sqrt{a^2 + 8 b c}} \ge \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}},$$

or equivalently, that

$$\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2} \geq a^{\frac{2}{3}}(a^{2}+8\,b\,c).$$

The AM-GM inequality yields

$$\left(a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}\right)^2 - \left(a^{\frac{4}{3}}\right)^2 = \left(b^{\frac{4}{3}} + c^{\frac{4}{3}}\right) \left(a^{\frac{4}{3}} + a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}\right) \ge 2 b^{\frac{2}{3}} c^{\frac{2}{3}} \cdot 4 a^{\frac{2}{3}} b^{\frac{1}{3}} c^{\frac{1}{3}} = 8 a^{\frac{2}{3}} b c.$$

Thus

$$\left(a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}\right)^2 \ge \left(a^{\frac{4}{3}}\right)^2 + 8 a^{\frac{2}{3}} b c$$
$$= a^{\frac{2}{3}} (a^2 + 8 b c),$$

so

$$\frac{a}{\sqrt{a^2 + 8 b c}} \ge \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}}.$$

Similarly, we have

$$\frac{b}{\sqrt{b^2 + 8 c a}} \ge \frac{b^{\frac{4}{3}}}{a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}} \text{ and}$$
$$\frac{c}{\sqrt{c^2 + 8 a b}} \ge \frac{c^{\frac{4}{3}}}{a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}}.$$

Adding these three inequalities yields

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1.$$

Comment. It can be shown that for any a, b, c > 0 and $\lambda \ge 8$, the following inequality holds:

$$\frac{a}{\sqrt{a^2 + \lambda b c}} + \frac{b}{\sqrt{b^2 + \lambda c a}} + \frac{c}{\sqrt{c^2 + \lambda a b}} \ge \frac{3}{\sqrt{1 + \lambda}}.$$

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Solution

Solution 1

We introduce the following symbols: *G* is the set of girls at the competition and *B* is the set of boys, *P* is the set of problems, P(g) is the set of problems solved by $g \in G$, and P(b) is the set of problems solved by $b \in B$. Finally, G(p) is the set of girls that solve $p \in P$ and B(p) is the set of boys that solve p. In terms of this notation, we have that for all $g \in G$ and $b \in B$,

(a)
$$|P(g)| \le 6$$
, $|P(b)| \le 6$, (b) $P(g) \cap P(b) \neq \emptyset$.

We wish to prove that some $p \in P$ satisfies $|G(p)| \ge 3$ and $|B(p)| \ge 3$. To do this, we shall assume the contrary and reach a contradiction by counting (two ways) all ordered triples (p, q, r) such that $p \in P(g) \cap P(b)$. With $T = \{(p, g, b) : p \in P(g) \cap P(b)\}$, condition (b) yields

$$|T| = \sum_{g \in G} \sum_{b \in B} |P(g) \cap P(b)| \ge |G| \cdot |B| = 21^2.$$
(1)

Assume that no $p \in P$ satisfies $|G(p)| \ge 3$ and $|B(p)| \ge 3$. We begin by noting that

$$\sum_{p \in P} |G(p)| = \sum_{g \in G} |P(g)| \le 6 |G| \quad \text{and} \quad \sum_{p \in P} |B(p)| \le 6 |B|.$$
(2)

(*Note*. The equality in (2) is obtained by a standard double-counting technique: Let $\chi(g, p) = 1$ if g solves p and $\chi(g, p) = 0$ otherwise, and interchange the orders of summation in $\sum_{p \in P} \sum_{g \in G} \chi(g, p)$.) Let

$$P_{+} = \{ p \in P : |G(p)| \ge 3 \},\$$

$$P_{-} = \{ p \in P : |G(p)| \le 2 \}.$$

Claim. $\sum_{p \in P_{-}} |G(p)| \ge |G|$; thus $\sum_{p \in P_{+}} |G(p)| \le 5 |G|$. Also $\sum_{p \in P_{+}} |B(p)| \ge |B|$; thus $\sum_{p \in P_{-}} |B(p)| \le 5 |B|$.

Proof. Let $g \in G$ be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply that g solves some problem p that is solved by at least $\lfloor 21/6 \rfloor = 4$ boys. By assumption, $|B(p)| \ge 4$ implies that $p \in P_{-}$, so every girl solves at least one problem in P_{-} . Thus

$$\sum_{p \in P_{-}} |G(p)| \ge |G|.$$
(3)

In view of (2) and (3) we have

$$\sum_{p\in P_+} \mid G(p)\mid = \sum_{p\in P} \mid G(p)\mid -\sum_{p\in P_-} \mid G(p)\mid \le 5\mid G\mid.$$

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a problem $p \in P_+$. Thus $\sum_{p \in P_+} |B(p)| \ge |B|$, and the calculation proceeds as before using (2). \Box

Using the claim just established, we find

$$\begin{split} |T| &= \sum_{p \in P} |G(p)| \cdot |B(p)| \\ &= \sum_{p \in P_+} |G(p)| \cdot |B(p)| + \sum_{p \in P_-} |G(p)| \cdot |B(p)| \\ &\leq 2 \sum_{p \in P_+} |G(p)| + 2 \sum_{p \in P_-} |B(p)| \\ &\leq 10 |G| + 10 |B| = 20 \cdot 21. \end{split}$$

This contradicts (1), so the proof is complete.

Solution 2

Let us use some of the notation given in the first solution. Suppose that for every $p \in P$ either $|G(p)| \leq 2$ or $|B(p)| \leq 2$. For each $p \in P$, color p red if $|G(p)| \leq 2$ and otherwise color it black. In this way, if p is red then $|G(p)| \leq 2$ and if p is black then $|B(p)| \leq 2$. Consider a chessboard with 21 rows, each representing one of the girls, and 21 columns, each representing one of the boys. For each $g \in G$ and $b \in B$, color the square corresponding to (g, b) as follows: pick $p \in P(g) \cap P(b)$ and assign p's color to that square. (By condition (b), there is always an available choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least $\lceil 441/2 \rceil = 221$ squares, and thus some row has at least $\lceil 221/21 \rceil = 11$ black squares or some column has at least 11 red squares.

Suppose the row corresponding to $g \in G$ has at least 11 black squares. Then for each of 11 squares, the black problem that was chosen in assigning the color was solved by at most 2 boys. Thus we account for at least $\lceil 11/2 \rceil = 6$ distinct problems solved by g. In view of condition (a), g solves only these problems. But then at most 12 boys solve a problem also solved by g, in violation of condition (b).

In exactly the same way, a contradiction is reached if we suppose that some column has at least 11 red squares. Hence some $p \in P$ satisfies $|G(p)| \ge 3$ and $|B(p)| \ge 3$.

Problem 4

Let *n* be an odd integer greater than 1, and let $k_1, k_2, ..., k_n$ be given integers. For each of the *n*! permutations $a = (a_1, a_2, ..., a_n)$ of 1, 2, ..., n, let

$$S(a) = \sum_{i=1}^n k_i a_i.$$

Prove that there are two permutations b and c, $b \neq c$, such that n! is a divisor of S(b) - S(c).

Solution

Let $\sum S(a)$ be the sum of S(a) over all n! permutations $a = (a_1, a_2, ..., a_n)$. We compute $\sum S(a) \mod n!$ two ways, one of which depends on the desired conclusion being false, and reach a contradiction when n is odd.

First way. In $\sum S(a)$, k_1 is multiplied by each $i \in \{1, ..., n\}$ a total of (n - 1)! times, once for each permutation of $\{1, ..., n\}$ in which $a_1 = i$. Thus the coefficient of k_1 in $\sum S(a)$ is

 $(n-1)!(1+2+\cdots+n) = (n+1)!/2.$

The same is true for all k_i , so

$$\sum S(a) = \frac{(n+1)!}{2} \sum_{i=1}^{n} k_i.$$
(1)

Second way. If n! is not a divisor of S(b) - S(c) for any $b \neq c$, then each S(a) must have a different remainder mod n!. Since there are n! permutations, these remainders must be precisely the numbers 0, 1, 2, ..., n! - 1. Thus

$$\sum S(a) \equiv \frac{(n!-1)n!}{2} \mod n!. \tag{2}$$

Combining (1) and (2), we get

$$\frac{(n+1)!}{2} \sum_{i=1}^{n} k_i \equiv \frac{(n!-1)n!}{2} \mod n!.$$
(3)

Now, for *n* odd, the left side of (3) is congruent to 0 modulo n!, while for n > 1 the right side is not congruent to 0 (n! - 1 is odd). For n > 1 and odd, we have a contradiction.

Problem 5

In a triangle ABC, let AP bisect $\angle BAC$, with P on BC, and let BQ bisect $\angle ABC$, with Q on CA.

It is known that $\angle BAC = 60^{\circ}$ and that AB + BP = AQ + QB.

What are the possible angles of triangle ABC?

Solution

Denote the angles of *ABC* by $\alpha = 60^{\circ}$, β , and γ . Extend *AB* to *P'* so that *BP'* = *BP*, and construct *P''* on *AQ* so that *AP''* = *AP'*. Then *BP'P* is an isosceles triangle with base angle $\beta/2$. Since

AQ + QP'' = AB + BP' = AB + BP = AQ + QB, it follows that QP'' = QB. Since AP'P'' is equilateral and AP bisects the angle at A, we have PP' = PP''.

Claim. Points B, P, P'' are collinear, so P'' coincides with C.

Proof. Suppose to the contrary that *BPP''* is a nondegenerate triangle. We have that $\angle PBQ = \angle PP'B = \angle PP''Q = \beta/2$. Thus the diagram appears as below, or else with *P* is on the other side of *BP''*. In either case, the assumption that *BPP''* is nondegenerate leads to BP = PP'' = PP', thus to the conclusion that *BPP''* is equilateral, and finally to the absurdity $\beta/2 = 60^\circ$ so $\alpha + \beta = 60^\circ + 120^\circ = 180^\circ$.

Thus points B, P, P'' are collinear, and P'' = C as claimed.

Since triangle *BCQ* is isosceles, we have $120^{\circ} - \beta = \gamma = \beta/2$, so $\beta = 80^{\circ}$ and $\gamma = 40^{\circ}$. Thus *ABC* is a 60-80-40 degree triangle.

Problem 6

Let a, b, c, d be integers with a > b > c > d > 0. Suppose that

a c + b d = (b + d + a - c) (b + d - a + c).

Prove that a b + c d is not prime.

Solution

Solution 1

Suppose to the contrary that a b + c d is prime. Note that

$$a b + c d = (a + d) c + (b - c) a = m \cdot \text{gcd} (a + d, b - c)$$

for some positive integer m. By assumption, either m = 1 or gcd(a + d, b - c) = 1. We consider these alternatives in turn.

Case (i): m = 1. Then

$$gcd(a + d, b - c) = a b + c d > a b + c d - (a - b + c + d)$$

= $(a + d) (c - 1) + (b - c) (a + 1)$
 $\geq gcd(a + d, b - c),$

which is false.

Case (ii): gcd(a + d, b - c) = 1. Substituting ac + bd = (a + d)b - (b - c)a for the left-hand side of ac + bd = (b + d + a - c)(b + d - a + c), we obtain

(a+d)(a-c-d) = (b-c)(b+c+d).

In view of this, there exists a positive integer k such that

$$a-c-d = k(b-c),$$

$$b+c+d = k(a+d).$$

Adding these equations, we obtain a + b = k(a + b - c + d) and thus k(c - d) = (k - 1)(a + b). Recall that a > b > c > d. If k = 1 then c = d, a contradiction. If $k \ge 2$ then

$$2 \ge \frac{k}{k-1} = \frac{a+b}{c-d} > 2,$$

a contradiction.

Since a contradiction is reached in both (i) and (ii), a b + c d is not prime.

Solution 2

The equality a c + b d = (b + d + a - c)(b + d - a + c) is equivalent to

$$a^2 - ac + c^2 = b^2 + bd + d^2.$$
 (1)

Let *ABCD* be the quadrilateral with AB = a, BC = d, CD = b, AD = c, $\angle BAD = 60^{\circ}$, and $\angle BCD = 120^{\circ}$. Such a quadrilateral exists in view of (1) and the Law of Cosines; the common value in (1) is BD^2 . Let $\angle ABC = \alpha$, so that $\angle CDA = 180^{\circ} - \alpha$. Applying the Law of Cosines to triangles *ABC* and *ACD* gives

$$a^{2} + d^{2} - 2 a d \cos \alpha = A C^{2} = b^{2} + c^{2} + 2 b c \cos \alpha.$$

Hence $2\cos\alpha = (a^2 + d^2 - b^2 - c^2)/(ad + bc)$, and

$$A C^{2} = a^{2} + d^{2} - a d \frac{a^{2} + d^{2} - b^{2} - c^{2}}{a d + b c} = \frac{(a b + c d) (a c + b d)}{a d + b c}$$

Because ABCD is cyclic, Ptolemy's Theorem gives

$$(A C \cdot B D)^2 = (a b + c d)^2$$

It follows that

$$(a c + b d) (a2 - a c + c2) = (a b + c d) (a d + b c).$$
(2)

(Note. Straightforward algebra can also be used obtain (2) from (1).) Next observe that

$$ab+cd > ac+bd > ad+bc.$$

$$\tag{3}$$

The first inequality follows from (a - d)(b - c) > 0, and the second from (a - b)(c - d) > 0.

Now assume that ab + cd is prime. It then follows from (3) that ab + cd and ac + bd are relatively prime. Hence, from (2), it must be true that ac + bd divides ad + bc. However, this is impossible by (3). Thus ab + cd must not be prime.

Note. Examples of 4-tuples (a, b, c, d) that satisfy the given conditions are (21, 18, 14, 1) and (65, 50, 34, 11).