42nd International Mathematical Olympiad

Washington, DC, United States of America

July 8-9, 2001

Problems

Each problem is worth seven points.

Problem 1

Let $A B C$ be an acute-angled triangle with circumcentre O. Let P on $B C$ be the foot of the altitude from A.
Suppose that $\angle B C A \geq \angle A B C+30^{\circ}$.
Prove that $\angle C A B+\angle C O P<90^{\circ}$.

Problem 2

Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

for all positive real numbers a, b and c.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Problem 4

Let n be an odd integer greater than 1 , and let $k_{1}, k_{2}, \ldots, k_{n}$ be given integers. For each of the n ! permutations $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $1,2, \ldots, n$, let

$$
S(a)=\sum_{i=1}^{n} k_{i} a_{i}
$$

Prove that there are two permutations b and $c, b \neq c$, such that n ! is a divisor of $S(b)-S(c)$.

Problem 5

In a triangle $A B C$, let $A P$ bisect $\angle B A C$, with P on $B C$, and let $B Q$ bisect $\angle A B C$, with Q on $C A$.
It is known that $\angle B A C=60^{\circ}$ and that $A B+B P=A Q+Q B$.
What are the possible angles of triangle $A B C$?

Problem 6

Let a, b, c, d be integers with $a>b>c>d>0$. Suppose that

$$
a c+b d=(b+d+a-c)(b+d-a+c)
$$

Prove that $a b+c d$ is not prime.

Problems with Solutions

Problem 1

Let $A B C$ be an acute-angled triangle with circumcentre O. Let P on $B C$ be the foot of the altitude from A.

Suppose that $\angle B C A \geq \angle A B C+30^{\circ}$.

Prove that $\angle C A B+\angle C O P<90^{\circ}$.

Solution

- Solution 1

Let $\alpha=\angle C A B, \beta=\angle A B C, \gamma=\angle B C A$, and $\delta=\angle C O P$. Let K and Q be the reflections of A and P, respectively, across the perpendicular bisector of $B C$. Let R denote the circumradius of $\triangle A B C$. Then $O A=O B=O C=O K=R$. Furthermore, we have $Q P=K A$ because $K Q P A$ is a rectangle. Now note that $\angle A O K=\angle A O B-\angle K O B=\angle A O B-\angle A O C=2 \gamma-2 \beta \geq 60^{\circ}$.

It follows from this and from $O A=O K=R$ that $K A \geq R$ and $Q P \geq R$. Therefore, using the Triangle Inequality, we have $O P+R=O Q+O C>Q C=Q P+P C \geq R+P C$. It follows that $O P>P C$, and hence in $\triangle C O P, \angle P C O>\delta$. Now since $\alpha=\frac{1}{2} \angle B O C=\frac{1}{2}\left(180^{\circ}-2 \angle P C O\right)=90^{\circ}-\angle P C O$, it indeed follows that $\alpha+\delta<90^{\circ}$.

- Solution 2

As in the previous solution, it is enough to show that $O P>P C$. To this end, recall that by the (Extended) Law of Sines, $A B=2 R \sin \gamma$ and $A C=2 R \sin \beta$. Therefore, we have

$$
B P-P C=A B \cos \beta-A C \cos \gamma=2 R(\sin \gamma \cos \beta-\sin \beta \cos \gamma)=2 R \sin (\gamma-\beta)
$$

It follows from this and from

$$
30^{\circ} \leq \gamma-\beta<\gamma<90^{\circ}
$$

that $B P-P C \geq R$. Therefore, we obtain that $R+O P=B O+O P>B P \geq R+P C$, from which $O P>O C$, as desired.

- Solution 3

We first show that $R^{2}>C P \cdot C B$. To this end, $\operatorname{since} C B=2 R \sin \alpha$ and $C P=A C \cos \gamma=2 R \sin \beta \cos \gamma$, it suffices to show that $\frac{1}{4}>\sin \alpha \sin \beta \cos \gamma$. We note that $1>\sin \alpha=\sin (\gamma+\beta)=\sin \gamma \cos \beta+\sin \beta \cos \gamma$ and $\frac{1}{2} \leq \sin (\gamma-\beta)=\sin \gamma \cos \beta-\sin \beta \cos \gamma$ since $30^{\circ} \leq \gamma-\beta<90^{\circ}$. It follows that $\frac{1}{4}>\sin \beta \cos \gamma$ and that $\frac{1}{4}>\sin \alpha \sin \beta \cos \gamma$.

Now we choose a point J on $B C$ so that $C J \cdot C P=R^{2}$. It follows from this and from $R^{2}>C P \cdot C B$ that $C J>C B$, so that $\angle O B C>\angle O J C$. Since $O C / C J=P C / C O$ and $\angle J C O=\angle O C P$, we have $\triangle J C O \cong \triangle O C P$ and $\angle O J C=\angle P O C=\delta$. It follows that $\delta<\angle O B C=90^{\circ}-\alpha$ or $\alpha+\delta<90^{\circ}$.

- Solution 4

On the one hand, as in the third solution, we have $R^{2}>C P \cdot C B$. On the other hand, the power of P with respect to the circumcircle of $\triangle A B C$ is $B P \cdot P C=R^{2}-O P^{2}$. From these two equations we find that

$$
O P^{2}=R^{2}-B P \cdot P C>P C \cdot C B-B P \cdot P C=P C^{2}
$$

from which $O P>P C$. Therefore, as in the first solution, we conclude that $\alpha+\delta<90^{\circ}$.

Problem 2

Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

for all positive real numbers a, b and c.

Solution

First we shall prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}} \geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}},
$$

or equivalently, that

$$
\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2} \geq a^{\frac{2}{3}}\left(a^{2}+8 b c\right)
$$

The AM-GM inequality yields

$$
\begin{aligned}
\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2}-\left(a^{\frac{4}{3}}\right)^{2} & =\left(b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)\left(a^{\frac{4}{3}}+a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right) \\
& \geq 2 b^{\frac{2}{3}} c^{\frac{2}{3}} \cdot 4 a^{\frac{2}{3}} b^{\frac{1}{3}} c^{\frac{1}{3}} \\
& =8 a^{\frac{2}{3}} b c
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2} & \geq\left(a^{\frac{4}{3}}\right)^{2}+8 a^{\frac{2}{3}} b c \\
& =a^{\frac{2}{3}}\left(a^{2}+8 b c\right)
\end{aligned}
$$

so

$$
\frac{a}{\sqrt{a^{2}+8 b c}} \geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}
$$

Similarly, we have

$$
\begin{aligned}
& \frac{b}{\sqrt{b^{2}+8 c a}} \geq \frac{b^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{3}{3}}+c^{\frac{4}{3}}} \text { and } \\
& \frac{c}{\sqrt{c^{2}+8 a b}} \geq \frac{c^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}} .
\end{aligned}
$$

Adding these three inequalities yields

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

Comment. It can be shown that for any $a, b, c>0$ and $\lambda \geq 8$, the following inequality holds:

$$
\frac{a}{\sqrt{a^{2}+\lambda b c}}+\frac{b}{\sqrt{b^{2}+\lambda c a}}+\frac{c}{\sqrt{c^{2}+\lambda a b}} \geq \frac{3}{\sqrt{1+\lambda}}
$$

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Solution

- Solution 1

We introduce the following symbols: G is the set of girls at the competition and B is the set of boys, P is the set of problems, $P(g)$ is the set of problems solved by $g \in G$, and $P(b)$ is the set of problems solved by $b \in B$. Finally, $G(p)$ is the set of girls that solve $p \in P$ and $B(p)$ is the set of boys that solve p. In terms of this notation, we have that for all $g \in G$ and $b \in B$,
(a) $|P(g)| \leq 6,|P(b)| \leq 6$,
(b) $P(g) \cap P(b) \neq \varnothing$.

We wish to prove that some $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$. To do this, we shall assume the contrary and reach a contradiction by counting (two ways) all ordered triples (p, q, r) such that $p \in P(g) \cap P(b)$. With $T=\{(p, g, b): p \in P(g) \bigcap P(b)\}$, condition (b) yields

$$
\begin{equation*}
|T|=\sum_{g \in G} \sum_{b \in B}|P(g) \cap P(b)| \geq|G| \cdot|B|=21^{2} . \tag{1}
\end{equation*}
$$

Assume that no $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$. We begin by noting that

$$
\begin{equation*}
\sum_{p \in P}|G(p)|=\sum_{g \in G}|P(g)| \leq 6|G| \quad \text { and } \sum_{p \in P}|B(p)| \leq 6|B| \tag{2}
\end{equation*}
$$

(Note. The equality in (2) is obtained by a standard double-counting technique: Let $\chi(g, p)=1$ if g solves p and $\chi(g, p)=0$ otherwise, and interchange the orders of summation in $\left.\sum_{p \in P} \sum_{g \in G} \chi(g, p).\right)$ Let

$$
\begin{aligned}
& P_{+}=\{p \in P:|G(p)| \geq 3\} \\
& P_{-}=\{p \in P:|G(p)| \leq 2\}
\end{aligned}
$$

Claim. $\sum_{p \in P_{-}}|G(p)| \geq|G|$; thus $\sum_{p \in P_{+}}|G(p)| \leq 5|G|$. Also $\sum_{p \in P_{+}}|B(p)| \geq|B|$; thus $\sum_{p \in P_{-}}|B(p)| \leq 5|B|$.

Proof. Let $g \in G$ be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply that g solves some problem p that is solved by at least $\lceil 21 / 6\rceil=4$ boys. By assumption, $|B(p)| \geq 4$ implies that $p \in P_{-}$, so every girl solves at least one problem in P_{-}. Thus

$$
\begin{equation*}
\sum_{p \in P_{-}}|G(p)| \geq|G| \tag{3}
\end{equation*}
$$

In view of (2) and (3) we have

$$
\sum_{p \in P_{+}}|G(p)|=\sum_{p \in P}|G(p)|-\sum_{p \in P_{-}}|G(p)| \leq 5|G|
$$

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a problem $p \in P_{+}$. Thus $\sum_{p \in P_{+}}|B(p)| \geq|B|$, and the calculation proceeds as before using (2).

Using the claim just established, we find

$$
\begin{aligned}
|T| & =\sum_{p \in P}|G(p)| \cdot|B(p)| \\
& =\sum_{p \in P_{+}}|G(p)| \cdot|B(p)|+\sum_{p \in P_{-}}|G(p)| \cdot|B(p)| \\
& \leq 2 \sum_{p \in P_{+}}|G(p)|+2 \sum_{p \in P_{-}}|B(p)| \\
& \leq 10|G|+10|B|=20 \cdot 21 .
\end{aligned}
$$

This contradicts (1), so the proof is complete.

- Solution 2

Let us use some of the notation given in the first solution. Suppose that for every $p \in P$ either $|G(p)| \leq 2$ or $|B(p)| \leq 2$. For each $p \in P$, color p red if $|G(p)| \leq 2$ and otherwise color it black. In this way, if p is red then $|G(p)| \leq 2$ and if p is black then $|B(p)| \leq 2$. Consider a chessboard with 21 rows, each representing one of the girls, and 21 columns, each representing one of the boys. For each $g \in G$ and $b \in B$, color the square corresponding to (g, b) as follows: pick $p \in P(g) \bigcap P(b)$ and assign p 's color to that square. (By condition (b), there is always an available choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least $\lceil 441 / 2\rceil=221$ squares, and thus some row has at least $\lceil 221 / 21\rceil=11$ black squares or some column has at least 11 red squares.

Suppose the row corresponding to $g \in G$ has at least 11 black squares. Then for each of 11 squares, the black problem that was chosen in assigning the color was solved by at most 2 boys. Thus we account for at least $\lceil 11 / 2\rceil=6$ distinct problems solved by g. In view of condition (a), g solves only these problems. But then at most 12 boys solve a problem also solved by g, in violation of condition (b).

In exactly the same way, a contradiction is reached if we suppose that some column has at least 11 red squares. Hence some $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$.

Problem 4

Let n be an odd integer greater than 1 , and let $k_{1}, k_{2}, \ldots, k_{n}$ be given integers. For each of the n ! permutations $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $1,2, \ldots, n$, let

$$
S(a)=\sum_{i=1}^{n} k_{i} a_{i}
$$

Prove that there are two permutations b and $c, b \neq c$, such that n ! is a divisor of $S(b)-S(c)$.

Solution

Let $\sum S(a)$ be the sum of $S(a)$ over all $n!$ permutations $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. We compute $\sum S(a) \bmod n!$ two ways, one of which depends on the desired conclusion being false, and reach a contradiction when n is odd.

First way. In $\sum S(a), k_{1}$ is multiplied by each $i \in\{1, \ldots, n\}$ a total of $(n-1)$! times, once for each permutation of $\{1, \ldots, n\}$ in which $a_{1}=i$. Thus the coefficient of k_{1} in $\sum S(a)$ is

$$
(n-1)!(1+2+\cdots+n)=(n+1)!/ 2
$$

The same is true for all k_{i}, so

$$
\begin{equation*}
\sum S(a)=\frac{(n+1)!}{2} \sum_{i=1}^{n} k_{i} \tag{1}
\end{equation*}
$$

Second way. If $n!$ is not a divisor of $S(b)-S(c)$ for any $b \neq c$, then each $S(a)$ must have a different remainder mod $n!$. Since there are $n!$ permutations, these remainders must be precisely the numbers $0,1,2, \ldots, n!-1$. Thus

$$
\begin{equation*}
\sum S(a) \equiv \frac{(n!-1) n!}{2} \bmod n! \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get

$$
\begin{equation*}
\frac{(n+1)!}{2} \sum_{i=1}^{n} k_{i} \equiv \frac{(n!-1) n!}{2} \bmod n!. \tag{3}
\end{equation*}
$$

Now, for n odd, the left side of (3) is congruent to 0 modulo n !, while for $n>1$ the right side is not congruent to 0 ($n!-1$ is odd). For $n>1$ and odd, we have a contradiction.

Problem 5

In a triangle $A B C$, let $A P$ bisect $\angle B A C$, with P on $B C$, and let $B Q$ bisect $\angle A B C$, with Q on $C A$.
It is known that $\angle B A C=60^{\circ}$ and that $A B+B P=A Q+Q B$.
What are the possible angles of triangle $A B C$?

Solution

Denote the angles of $A B C$ by $\alpha=60^{\circ}, \beta$, and γ. Extend $A B$ to P^{\prime} so that $B P^{\prime}=B P$, and construct $P^{\prime \prime}$ on $A Q$ so that $A P^{\prime \prime}=A P^{\prime}$. Then $B P^{\prime} P$ is an isosceles triangle with base angle $\beta / 2$. Since $A Q+Q P^{\prime \prime}=A B+B P^{\prime}=A B+B P=A Q+Q B$, it follows that $Q P^{\prime \prime}=Q B$. Since $A P^{\prime} P^{\prime \prime}$ is equilateral and $A P$ bisects the angle at A, we have $P P^{\prime}=P P^{\prime \prime}$.

Claim. Points $B, P, P^{\prime \prime}$ are collinear, so $P^{\prime \prime}$ coincides with C.
Proof. Suppose to the contrary that $B P P^{\prime \prime}$ is a nondegenerate triangle. We have that $\angle P B Q=\angle P P^{\prime} B=\angle P P^{\prime \prime} Q=\beta / 2$. Thus the diagram appears as below, or else with P is on the other side of $B P^{\prime \prime}$. In either case, the assumption that $B P P^{\prime \prime}$ is nondegenerate leads to $B P=P P^{\prime \prime}=P P^{\prime}$, thus to the conclusion that $B P P^{\prime}$ is equilateral, and finally to the absurdity $\beta / 2=60^{\circ}$ so $\alpha+\beta=60^{\circ}+120^{\circ}=180^{\circ}$.

Thus points $B, P, P^{\prime \prime}$ are collinear, and $P^{\prime \prime}=C$ as claimed. \square
Since triangle $B C Q$ is isosceles, we have $120^{\circ}-\beta=\gamma=\beta / 2$, so $\beta=80^{\circ}$ and $\gamma=40^{\circ}$. Thus $A B C$ is a $60-80-40$ degree triangle.

Problem 6

Let a, b, c, d be integers with $a>b>c>d>0$. Suppose that

$$
a c+b d=(b+d+a-c)(b+d-a+c)
$$

Prove that $a b+c d$ is not prime.

Solution

- Solution 1

Suppose to the contrary that $a b+c d$ is prime. Note that

$$
a b+c d=(a+d) c+(b-c) a=m \cdot \operatorname{gcd}(a+d, b-c)
$$

for some positive integer m. By assumption, either $m=1$ or $\operatorname{gcd}(a+d, b-c)=1$. We consider these alternatives in turn.

Case (i): $m=1$. Then

$$
\begin{aligned}
\operatorname{gcd}(a+d, b-c) & =a b+c d>a b+c d-(a-b+c+d) \\
& =(a+d)(c-1)+(b-c)(a+1) \\
& \geq \operatorname{gcd}(a+d, b-c)
\end{aligned}
$$

which is false.
Case (ii): $\operatorname{gcd}(a+d, b-c)=1$. Substituting $a c+b d=(a+d) b-(b-c) a$ for the left-hand side of $a c+b d=(b+d+a-c)(b+d-a+c)$, we obtain

$$
(a+d)(a-c-d)=(b-c)(b+c+d)
$$

In view of this, there exists a positive integer k such that

$$
\begin{aligned}
a-c-d & =k(b-c) \\
b+c+d & =k(a+d)
\end{aligned}
$$

Adding these equations, we obtain $a+b=k(a+b-c+d)$ and thus $k(c-d)=(k-1)(a+b)$. Recall that $a>b>c>d$. If $k=1$ then $c=d$, a contradiction. If $k \geq 2$ then

$$
2 \geq \frac{k}{k-1}=\frac{a+b}{c-d}>2
$$

a contradiction.
Since a contradiction is reached in both (i) and (ii), $a b+c d$ is not prime.

- Solution 2

The equality $a c+b d=(b+d+a-c)(b+d-a+c)$ is equivalent to

$$
\begin{equation*}
a^{2}-a c+c^{2}=b^{2}+b d+d^{2} \tag{1}
\end{equation*}
$$

Let $A B C D$ be the quadrilateral with $A B=a, B C=d, C D=b, A D=c, \angle B A D=60^{\circ}$, and $\angle B C D=120^{\circ}$. Such a quadrilateral exists in view of (1) and the Law of Cosines; the common value in (1) is $B D^{2}$. Let $\angle A B C=\alpha$, so that $\angle C D A=180^{\circ}-\alpha$. Applying the Law of Cosines to triangles $A B C$ and $A C D$ gives

$$
a^{2}+d^{2}-2 a d \cos \alpha=A C^{2}=b^{2}+c^{2}+2 b c \cos \alpha
$$

Hence $2 \cos \alpha=\left(a^{2}+d^{2}-b^{2}-c^{2}\right) /(a d+b c)$, and

$$
A C^{2}=a^{2}+d^{2}-a d \frac{a^{2}+d^{2}-b^{2}-c^{2}}{a d+b c}=\frac{(a b+c d)(a c+b d)}{a d+b c}
$$

Because $A B C D$ is cyclic, Ptolemy's Theorem gives

$$
(A C \cdot B D)^{2}=(a b+c d)^{2}
$$

It follows that

$$
\begin{equation*}
(a c+b d)\left(a^{2}-a c+c^{2}\right)=(a b+c d)(a d+b c) \tag{2}
\end{equation*}
$$

(Note. Straightforward algebra can also be used obtain (2) from (1).) Next observe that

$$
\begin{equation*}
a b+c d>a c+b d>a d+b c \tag{3}
\end{equation*}
$$

The first inequality follows from $(a-d)(b-c)>0$, and the second from $(a-b)(c-d)>0$.
Now assume that $a b+c d$ is prime. It then follows from (3) that $a b+c d$ and $a c+b d$ are relatively prime. Hence, from (2), it must be true that $a c+b d$ divides $a d+b c$. However, this is impossible by (3). Thus $a b+c d$ must not be prime.

Note. Examples of 4-tuples (a, b, c, d) that satisfy the given conditions are $(21,18,14,1)$ and $(65,50,34,11)$.

