
IOI’95 Task Solution WIRES (p. 1 of 9)

Task Analysis

Let us first reformulate the task. We intro-
duce set A = 1..M of wires and set B = 1..N of
switches. (In the task it is given that M = N,
but we will not use that fact when develop-
ing our programs.) The environment of the
program knows a (total) function f : A → B,
which indicates for each wire i ∈ A that it is
connected to switch f (i) ∈ B. In Pascal termi-
nology this context is set up as follows:

const

MaxM = 90;

MaxN = 90;

type

A = 1..MaxM; { wires }

B = 1..MaxN; { switches }

var

{ input variables }

M: A; { intended A = 1..M }

N: B; { intended B = 1..N }

{ output variable }

f: array [A] of B;

The program has to reconstruct function f by
doing measurements. With the probe com-
mand T the program can find out whether
f (i) ∈ C for wire i ∈A and set of switches C⊆ B
(we call it the probe command here, because
‘test’ is an overloaded name). The set of (con-
ducting) switches C is initially empty and is
affected by the change command C. The main
block of a reconstruction program will look
like this:

var i: A;

begin

readln(M, N) ;

{ reconstruct f } ... ;

write('D') ;

for i := 1 to M do

write(' ', f[i]:1) ;

writeln

end.

We abstract from the details of the probe and
change commands by introducing function
probe and procedure change:

function probe(i: A): boolean;

var r: char;

begin

writeln('T ', i:1) ;

readln(r) ;

probe := (r = 'Y')

end; { probe }

procedure change(j: B);

var r: char;

begin

writeln('C ', j:1) ;

readln(r) { ignore }

end; { change }

We will now sketch two ‘naive’ methods for
reconstructing f . In method W1 we deter-
mine for each wire the (unique) switch to
which it is connected. In method S1 we de-
termine for each switch all the wires that
are connected to it. Here is a procedure for
method W1:

type B0 = 0..MaxN;

procedure W1;

var i: A; j: B0; p: boolean;

begin

for i := 1 to M do begin

j := 0 ;

repeat

j := j + 1 ;

change(j) ;

{ switch j conducting }

p := probe(i) ;

change(j)

{ switch j non-conducting }

until p ;

f[i] := j

end { for i }

end; { W1 }

Here is a procedure for method S1:

7th International Olympiad in Informatics Eindhoven, NL

wires.pdf
http://olympiads.win.tue.nl/ioi95/


IOI’95 Task Solution WIRES (p. 2 of 9)

procedure S1;

var i: A; j: B;

begin

for j := 1 to N do begin

change(j) ;

{ switch j conducting }

for i := 1 to M do

if probe(i) then f[i] := j ;

change(j)

{ switch j non-conducting }

end { for j }

end; { S1 }

Let us briefly compare these methods. In
method W1 the change and probe com-
mands are both in the inner loop, whereas
in method S1 the change command is in the
outer loop and only the probe command is
in the inner loop. Method S1 always requires
2N changes and MN probes. For method W1
the numbers depend on the cable. In the
worst case (all wires connected to switch N),
it does 2MN changes and MN probes. In the
best case (all wires connected to switch 1),
2M changes and M probes suffice. On av-
erage, method W1 does MN changes and
1
2 MN probes, because, on average, the inner
loop is broken off halfway.

Both methods can be refined. In
method W1, switches are reset after each
probe, but this is not necessary. One could
probe each wire initially and then continue
changing switches until the probe result
differs from the initial probe. This is done in
method W2:

procedure W2;

var i: A; j: B0; p: boolean;

begin

for i := 1 to M do begin

p := probe(i) ; j := 0 ;

repeat

j := j + 1 ;

change(j)

until probe(i) <> p ;

f[i] := j

end { for i }

end; { W2 }

On average, method W2 probes M + 1
2 MN

times and changes 1
2MN times. A small

further improvement (big improvements are
kept for later) can be obtained by observing
that the initial probe can be omitted in some
cases and that once a wire has been probed
negatively with N − 1 switches, it must be
connected to the one remaining switch. This
is incorporated (cleverly) in method W3:

procedure W3;

var i: A; j: B; p: boolean;

begin

for i := 1 to M do begin

if (i=1) or (N=1) then p := false

else p := probe(i) ;

j := 1 ; f[i] := N ;

while f[i] <> j do begin

change(j) ;

if probe(i) = p then j := j + 1

else f[i] := j

end { while }

end { for i }

end; { W3 }

Method S1 can be improved by skipping, in
the inner loop, those wires that have already
been determined. This also removes the need
to make the switches non-conducting again.
Furthermore, when N−1 switches have been
covered, the remaining undetermined wires
must be connected to the remaining switch.
Here is the—surprisingly compact—code for
method S2:

procedure S2;

var i: A; j: B;

begin

for i := 1 to M do f[i] := N ;

for j := 1 to N-1 do begin

change(j) ;

for i := 1 to M do begin

if f[i] = N then

if probe(i) then f[i] := j

end { for j }

end; { S2 }

Method S2 issues N − 1 changes and, on av-
erage, approximately 1

2M(N − 1) probes (be-

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 3 of 9)

cause on average about 1
2M wires are probed

in the inner loop) but certainly no more than
M(N − 1) probes (in case all wires are con-
nected to switch N). A small improvement
can be obtained by stopping the outer loop as
soon as all wires have been determined (the
best case then issues 1 change and M probes).

The tables below summarize the perfor-
mance of these methods (W3 has not been in-
cluded because it is just a little better than
W2). So far, method S2 seems the best, but
for M = N = 90 the worst case still requires
902 = 8100 commands (including ‘Done’).

Number of Changes

best average worst

W1 2M MN 2MN

W2 M 1
2MN MN

S1 2N

S2 N− 1

Number of Probes

best average worst

W1 M 1
2MN MN

W2 2M M + 1
2MN M + MN

S1 MN

S2 M 1
2M(N − 1) M(N − 1)

How much further improvement can we
expect? To answer this question let us look
at the matter from another angle. The total
number of possible functions f equals NM

(for each of the M wires there is a choice
of N switches). Each probe gives at most
one bit of information (since there are only
two possible results for a probe: Y or N). On
information-theoretical grounds, therefore,
the minimum number of probes for recon-
structing f is log2(NM) = M log2 N, where log2
denotes the logarithm to base two. Whether
this lower bound is feasible is another mat-
ter. This analysis also does not say anything
about the number of change commands.

Observe the appearance of the factor
log2 N, where the preceding methods ob-
tained a factor N or 1

2 (N− 1) or so. This gives
the impression that we should be able to
squeeze more out of it. Let us concentrate on
reducing the number of probes first.

In method W1, we used a linear search to
find the switch to which a given wire is con-
nected. A linear search through N objects re-
quires, on average, 1

2N tests. However, when
applicable, a binary search would need only
log2 N tests.

In this case, a binary search is indeed pos-
sible, because we can make a whole set of
switches conducting before doing a probe.
Say, we start with half the switches conduct-
ing and half non-conducting. Then we probe
the wire and continue with the set of con-
ducting switches if the probe yields true, and
with set of the non-conducting switches oth-
erwise. At every step the set of candidate
switches is halved, until a singleton remains.
Thus we find the desired switch in about
log2 N probes.

We can also arrive at this method in a more
direct way. The knowledge that the program
gathers about f can be captured by stating for
each wire i ∈ A to what set of switches it is
possibly connected. Let us denote the candi-
date set for wire i by G(i) ⊆ B. Initially, we
have G(i) = B for every wire i. Function f is
said to be compatible with ‘state of knowl-
edge’ G when f (i) ∈ G(i) for all i ∈ A. (In a
sense, G generalizes f .)

Let C⊆ B be the set of conducting switches
at the moment of a probe. If probing wire i
yields true, then this reduces the set of can-
didate switches for i to G(i)∩ C. If the probe
of i yields false, then this reduces the candi-
date set to G(i)∩ (B−C) = G(i)−C.

The number F(G) of functions f compatible
with G is readily computed as the product of
the sizes of the sets G(i) for i∈A. Initially F(G)
equals NM, since G(i) = B for all i ∈ A. The
best we can hope to accomplish by a single
probe is halving the number F(G) (by halving
the candidate set for the probed wire). There-

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 4 of 9)

fore, we must do a probe on some wire i with
half of the switches in G(i) conducting and the
other half non-conducting.

Here is the code that uses a binary search to
find the switch for a single wire i . The candi-
date set always consists of adjacent switches
in the range L..R. It is assumed that initially
all switches are non-conducting.

procedure BinarySearch(i: A);

var j, L, R, h: B; p: boolean;

begin

L := 1 ; R := N ; p := false ;

{ switches L..R are p-conducting }

while L <> R do begin

h := (L + R) div 2 ;

for j := L to h do change(j) ;

{ sw. L..h are non-p-conducting }

{ sw. h+1..R are p-conducting }

if probe(i) = p then L := h+1

else begin R := h ; p := not p end

end { while } ;

f[i] := L

end; { BinarySearch }

Note that the state of the switches after ex-
ecution of BinarySeach is rather haphazard.
For repeated application they must be reset.
This is most efficiently done inside the pro-
cedure by resetting conducting switches that
are no longer candidates (this occurs when
probe(i) yields false). When doing so, the
total number of probes for reconstructing f
(by invoking BinarySearch for each wire)
comes at M log2 N and the total number of
changes at about 3

2MN (without resetting, the
number of changes for determining a single
wire is exactly N− 1).

A second thing to note is that the possible
intervals of switches L..R are not arbitrary.
For instance, in case of ten switches, the in-
terval 2..3 will never occur (the intervals 1..5,
1..3, and 3..3 can occur). The following ta-
ble summarizes the intervals that occur when
‘binary searching’ the switch for some wire i
among ten switches:

N = 10 switches
phases 1 2 3 4 5 6 7 8 9 10

1 • • • • • ◦ ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ • • • • • ◦ ◦
3 • • ◦ ◦ • ◦ ◦ • • ◦
4 ◦ • • ◦

changes 4 3 2 2 1 3 2 1 1 0

In phase 1, switches 1..5 (marked • in the ta-
ble) are made conducting and switches 6..10
(marked ◦) are kept non-conducting. Next,
wire i is probed and we continue with that
half of the interval in which its switch is now
known to occur. The row labeled ‘changes’
counts the number of switch changes for each
column. Altogether this method requires at
most 19 changes and, on average, 3.4 probes
per wire.

It is imaginable that the binary searches
for all wires can be combined. Observe that
when the switch for wire i is known to be,
say, in the interval 6..8 then the states of the
switches outside this interval are irrelevant to
the result of probing i.

We will now describe a recursive pro-
cedure that combines all binary searches.
For that purpose we introduce array g to
record for each wire its interval of candidate
switches:

var g: array [A] of

record gL, gR: B end;

{ g[i].gL <= f[i] <= g[i].gR }

Array g generalizes f , but specializes G. Pro-
cedure init_g initializes the array:

procedure init_g;

var i: A;

begin

for i := 1 to M do

with g[i] do begin

gL := 1 ; gR := N

end { with }

end; { init_g }

Procedure BS1 does the reconstruction:

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 5 of 9)

procedure BS1;

var i: A;

begin

init_g ;

AllBS1(1, N, false) ;

for i := 1 to M do

f[i] := g[i].gL

end; { BS1 }

where procedure AllBS1 combines all binary
searches:

procedure AllBS1(L, R: B; p: boolean);

{ switches L..R are p-conducting }

var i: A; j, h: B;

begin

if L <> R then begin

h := (L + R) div 2 ;

for j := h+1 to R do change(j) ;

{ sw. L..h are p-conducting, }

{ h+1..R are non-p-conducting }

for i := 1 to M do with g[i] do

if (gL <= h) and (h <= gR) then

if probe(i) = p then gR := h

else gL := h+1 ;

AllBS1(L, h, p) ;

AllBS1(h+1, R, not p)

end { if }

end; { AllBS1 }

We have incorporated a small optimization to
reduce the number of changes. In procedure
BinarySearch the for-loop with j ranges over
L..h, whereas now j ranges over h+1..R.
When the range L..R contains an odd num-
ber of switches, there is some freedom to split
it. Our choice in AllBS1 minimizes the num-
ber of changes. The following table shows the
states for ten switches:

N = 10 switches
phases 1 2 3 4 5 6 7 8 9 10

1 ◦ ◦ ◦ ◦ ◦ • • • • •
2 ◦ ◦ ◦ • • • • • ◦ ◦
3 ◦ ◦ • • ◦ • • ◦ ◦ •
4 ◦ • • ◦

changes 0 1 1 1 2 1 2 2 2 3

Thus, there are 15 switch changes (instead
of 19 in the preceding table). In general,

the expected number of probes per wires
is log2 N. The number of changes is ap-
proximately 1

2 N log2 N, because in each phase
about half the switches are changed (this
number only depends on N and not on the
cable). The expected number of changes can
be reduced by suppressing superfluous re-
cursive calls. A recursive call is unnecessary
when no wires are connected to switches in
that interval. Here is the adapted code:

procedure AllBS2(L, R: B; p: boolean);

{ switches L..R are p-conducting }

var i: A; j, h: B; u, v: boolean;

begin

if L <> R then begin

h := (L + R) div 2 ;

for j := h+1 to R do change(j) ;

{ sw. L..h are p-conducting, }

{ h+1..R are non-p-conducting }

u := false ; v := false ;

{ u = # wires to sw. L..h > 0 }

{ v = # wires to sw. h+1..R > 0 }

for i := 1 to M do with g[i] do

if (gL <= h) and (h <= gR) then

if probe(i) = p then begin

gR := h ;

u := true

end { then }

else begin

gL := h+1 ;

v := true

end { else } ;

if u then AllBS2(L, h, p) ;

if v then AllBS2(h+1, R, not p)

end { if }

end; { AllBS2 }

Note that BS2 issues the same commands as
BS1 when none of the recursive calls with L 6=
R happen to be suppressed. On average, BS2
performs better than BS1 because there are
many cables for which recursive calls (with
L 6= R) can be suppressed. For worst-case
performance the comparison is more compli-
cated.

The worst case for BS1 occurs when the
number of probes is maximal, since the num-

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 6 of 9)

ber of changes only depends on N. There
are only two possibilities for the number of
probes per wire: log2 N rounded down and
rounded up. In the example of ten switches,
the worst cases are obtained by connecting
wires only to switches 1, 2, 6, or 7 (appearing
in all 4 phases and not just in 3). Such a worst
case requires 15 + 10 ∗ 4 + 1 = 56 commands.

Worst-case performance of BS2 is more dif-
ficult to characterize. To obtain a situation no
better than the worst case for BS1, all wires
should be connected to ‘maximal’ switches
and no recursive calls with L 6= R should be
suppressed. For N = 6 and M ≥ 2, this is in-
deed possible (see table below): connect one
wire to switch 1 and the others to switch 4.

N = 5 N = 6
ph. 1 2 3 4 5 1 2 3 4 5 6
1 ◦ ◦ ◦ • • ◦ ◦ ◦ • • •
2 ◦ ◦ • • ◦ ◦ ◦ • • • ◦
3 ◦ • ◦ • • ◦

ch. 0 1 1 1 2 0 1 1 1 2 2

For N = 5, however, it is impossible: ei-
ther no wires are connected to switches
in the range 4..5 (and the recursive call
AllBS2(4, 5, ...) is suppressed, avoiding
one change) or, otherwise, at least one wire
takes only 2 probes instead of 3. It turns
out that BS2’s worst-case performance is no
better than BS1’s when 3 ∗ 2k ≤ N ≤ 4 ∗ 2k.

Another way to arrive at a logarithmic
method is based on writing the switch la-
bels (minus 1, for best results) in binary no-
tation and using the bits to decide on the
switch state for each phase. The following ta-
ble shows method BN at work for N = 10 and
phases done most significant bit (MSB) first:

N = 10 switches
phases 1 2 3 4 5 6 7 8 9 10

1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
2 ◦ ◦ ◦ ◦ • • • • ◦ ◦
3 ◦ ◦ • • ◦ ◦ • • ◦ ◦
4 ◦ • ◦ • ◦ • ◦ • ◦ •

changes 0 1 2 1 2 3 2 1 2 3

When the number of switches is a power of
two, method BN is equivalent to the preced-
ing one. In general, however, it requires,
on average, more changes and probes (for
N = 10, it takes 17 changes, and 4 probes per
wire). Doing the phases in the reverse order,
least significant bit (LSB) first, is even slightly
worse. BN’s code is given below. Parame-
ter rev determines the order of the phases.
Array s keeps track of the switch states to
facilitate efficient switch setting. Note that
odd(a div 2^b) yields the b-th bit of a.

procedure BN(rev: boolean);

{ if rev then LSB first else MSB }

var

s: array [B] of boolean;

{ s[j] == sw. j is conducting }

i: A; j: B; w, k: integer;

begin

for i := 1 to M do f[i] := 1 ;

for j := 1 to N do s[j] := false ;

w := 1 ; k := 0 ; { w = 2^k }

while w < N do begin

w := 2*w ; k := k + 1

end { while } ;

{ k = # phases }

if rev then w := 1

else w := w div 2 ;

{ w = bit weight }

while k <> 0 do begin

{ adjust switches }

for j := 1 to N do

if odd((j-1) div w) <> s[j]

then begin

change(j) ;

s[j] := not s[j]

end { if } ;

{ adjust f }

for i := 1 to M do

if probe(i) then

f[i] := f[i] + w ;

if rev then w := 2*w

else w := w div 2 ;

k := k - 1

end { while }

end; { BN }

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 7 of 9)

History and Variations

This task was conceived while moving into
my new home. Electricity wires run from
each wall outlet and light fixture to a box
of switches (and fuses) in the basement (in
my case, ten switches). I had to reconstruct
the connection pattern because the previous
owner had not committed it to paper. A
probe command involves walking to a par-
ticular room to test an outlet or fixture. A
change command involves walking to the
basement and flipping a switch. This also
causes a power cycle on all equipment con-
nected to the switch. I wanted to minimize
both, and started thinking about clever meth-
ods.

The task can be generalized in several
ways. Consider sets A and B with M and N el-
ements respectively, and a relation R: A↔ B,
that is, R ⊆ A × B. The program’s task is to
reconstruct R by doing measurements.

In the original task, R is restricted to a total
function from A to B. The table below gives
the number of possible relations R for various
constraints on R:

constraint on R number of Rs

none 2MN

left total (2M− 1)N

right total (2N − 1)M

partial function (N + 1)M

total function NM

injection (M ≤ N) N!
(N−M)!

surjection (M ≥ N) N(M−1)!
(M−N)!

bijection (M = N) N!

On information-theoretical grounds, the
base-two logarithm of the number of possi-
ble relations is a lower bound on the number
of probes required for reconstruction. Only
for the cases of ‘no constraint’ and of a partial
or total function is it easy to attain this lower
bound. The case of ‘no constraint’ is not very
interesting because you cannot do better

than probe every wire-switch pair. The case
of a bijection (that is, a wire permutation)
is particularly intriguing, but most likely it
is as complicated as minimum-comparison
sorting.

Also the possibilities for doing measure-
ments can be varied. For instance, one could
introduce switches on side A as well. Further-
more, other cost functions can be used: for in-
stance, a probe command is ten times as ex-
pensive as a change command. Finally, it can
be required that the switches are back in their
initial state when the program terminates.

Motivations and Judging

I have chosen for total functions because they
are easy to explain, the task is not trivial, and
it is free from the complications surround-
ing permutations. The restriction M = N was
imposed to simplify the input (allowing uni-
form treatment of Pascal, C++, and BASIC)
and the complexity analysis.

I have chosen the lower bounds on M
(and N) equal to one, because that avoids the
(trivial and somewhat confusing) boundary
case zero but includes the boundary case one
(which needs care in some logarithmic ap-
proaches). I have chosen the upper bound
approximately 100 because that is big enough
to clearly distinguish quadratic and logarith-
mic methods, yet small enough to impose a
relatively small bound on the total number of
commands (namely, approximately 1000).

I wanted the best competitors to find BS2
(not just BS1) and I wanted ‘nice unrevealing’
numbers for the upper bounds. The reason
for choosing upper bound 90, instead of 100,
is that (i) BS2 outperforms BS1 (worst-case)
for 65 ≤ N ≤ 95 but not for 96 ≤ N ≤ 128,
and (ii) BS2 ‘accidentally’ requires at worst
900 commands for N = 90, whereas for other
values of N this upper bound is not such a
‘nice’ number.

The performance bound (on the number of
commands) is fixed, that is, independent of

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 8 of 9)

the actual values of M and N. The tests will be
chosen such that quadratic methods succeed
for at least one but not all cases. I also wanted
at least one test case for which a ‘naive’ log-
arithmic method (such as BN) fails (because
it does not sufficiently reduce the number of
changes).

Some tests will be played against ‘Teaser’, a
program that tries to give away as little infor-
mation as possible, thereby eliciting worst-
case behavior. Teaser does not choose a
function at the start, but answers the probes
such that F(G) is reduced as little as possi-
ble. When both probe answers give equal
reductions (as for most logarithmic meth-
ods), Teaser tries to maximize the number of
changes by a ‘voting’ scheme. In a sense,
Teaser lets the program under test construct
its own worst-case function f .

Some input will be chosen randomly to
evaluate average-case behavior, avoiding
special cases that cause exceptionally good
or bad performance.

The following tables summarize the per-
formance of the quadratic methods:

Number of Commands

average worst

W1 3
2 M2 + 1 3M2 + 1

W2 M2 + M + 1 2M2 + M + 1

S1 M2 + 2M + 1

S2 1
2M2 + 1

2 M M2

Maximum feasible M

average worst

W1 24 17

W2 29 20

S1 29

S2 44 30

Here is a table summarizing the ten test
cases:

nr M f Failure target
1 1 C incorrect (esp. log.)
2 15 R incorrect
3 21 T very ineff.
4 30 T ineff. S-meth.
5 35 R ineff. avg. W-meth.
6 40 R ineff. avg. S-meth.
7 80 T non-logarithmic
8 86 T ineff. binary notation
9 89 T binary notation

10 90 T non-suppressing

Column ‘nr’ gives the sequence number of
the test case, column ‘M’ gives the number
of wires, column ‘f ’ describes the connectiv-
ity function (C=wire 1 to switch 1; R=random;
T=teasing), and the rightmost column indi-
cates which methods are intended to fail. The
test cases are roughly arranged in order of in-
creasing severity: when a program fails a test
it, usually, will also fail all subsequent tests.

Addendum

After IOI’95, several people (some of them
participants!) have pointed out to me that it
is possible to do better than BS2. For exam-
ple, the case of M = N = 90 can be solved
in a worst-case of 878 commands, which is
well below the 900 commands allowed (and
required by BS2).

The idea is to do an asymmetric binary
search (ABS), changing fewer than half the
switches in such a way that the additional
number of probes still gives an optimal result.
The optimum degree of asymmetry can be
determined by dynamic programming. This
takes considerably more time and memory
than BS2, but could be done as preprocess-
ing. Nobody actually succeeded with this ap-
proach at IOI’95.

The smallest case improved by ABS is for
M = 2 and N = 6: BS2 needs 14 commands in-
stead of the optimum 13. In the first phase
it is optimal to change only two (instead of
three) of the six switches:

7th International Olympiad in Informatics Eindhoven, NL



IOI’95 Task Solution WIRES (p. 9 of 9)

N = 6 switches
phases 1 2 3 4 5 6

1 ◦ ◦ ◦ ◦ • •
2 ◦ ◦ • • • ◦
3 ◦ • • ◦

changes 0 1 1 2 1 2

Compare this table to the ‘symmetric’ tables
above for N = 5 and N = 6. The maximum
number of commands (changes plus probes
plus ‘done’) now still seems to be 7 + 6 + 1 =
14. However, this can never occur in the
asymmetric case, because either a wire is con-
nected to a switch in the range 5..6 (in which
case we save a probe), or no wire is connected
to switches in the range 5..6 (in which case
we save a change). Note the similarity to the
reason given above for why BS2 performs no
better than BS1 with N = 5.

Let BS2[i, j] and ABS[i, j] be the worst-case
number of changes-plus-probes (not count-
ing ‘done’) for solving the problem with
i wires and j switches, using BS2 and an
optimized ABS, respectively. Observe that
these worst-case numbers can be determined
by considering the situation where s of the
j switches are changed and all wires are
probed, such that k of the i wires turn out to
be connected to the changed switches. The
numbers BS2[i, j] satisfy the recurrence rela-
tion:

BS2[i, j] =
s + i + (max k : 0 ≤ k ≤ i

: BS2[k, s] + BS2[i−k, j−s])

where s = j div 2. The numbers ABS[i, j] sat-
isfy the recurrence relation:

ABS[i, j] =
(min s : 1 ≤ s ≤ j div 2

: s + i + H(i, j, s))

where

H(i, j, s) =
(max k : 0 ≤ k ≤ i

: ABS[k, s] + ABS[i−k, j−s])

The program WORST.PAS determines
BS2[i, j], ABS[i, j], and an optimal number s

of switches to change for ABS (a minus sign
indicates a deviation from the symmetric
split of BS2). For M = N = 90, the output file
TABLE.TXT shows that an optimal number
of switches to change in the first phase is
only 38 (instead of 45 used by BS2).

Tom Verhoeff

7th International Olympiad in Informatics Eindhoven, NL

worst.pas
table.txt

	Task Analysis
	History and Variations
	Motivations and Judging
	Addendum

