Party Lamps

To brighten up the gala dinner of the IOI'98 we have a set of \mathbf{N} coloured lamps numbered from 1 to \mathbf{N}. The lamps are connected to four buttons:
button 1 -- when this button is pressed, all the lamps change their state: those that are ON are turned OFF and those that are OFF are turned ON.
button 2 -- changes the state of all the odd numbered lamps.
button 3 -- changes the state of all the even numbered lamps.
button 4 -- changes the state of the lamps whose number is of the form $3 K+1$ (with $K \geq 0$), i.e., 1,4,7,...

There is a counter \mathbf{C} which records the total number of button presses.

When the party starts, all the lamps are ON and the counter \mathbf{C} is set to zero.

Task

You are given the value of counter \mathbf{C} and information on the final state of some of the lamps. Write a program to determine all the possible final configurations of the \mathbf{N} lamps that are consistent with the given information, without repetitions.

Input Data

The file named PARTY.IN with four lines, describing the number \mathbf{N} of lamps available, the number \mathbf{C} of button presses, and the state of some of the lamps in the final configuration.

The first line contains the number \mathbf{N} and the second line the final value of counter \mathbf{C}. The third line lists the lamp numbers you are informed to be ON in the final configuration, separated by one space and terminated by the integer -1. The fourth line lists the lamp numbers you are informed to be OFF in the final configuration, separated by one space and terminated by the integer $\mathbf{- 1}$.

Sample Input:

10
1 -1 7 -1

In this case, there are 10 lamps and only one button has been pressed. Lamp 7 is OFF in the final configuration.

Output Data

The file PARTY.OUT must contain all the possible final configurations (without repetitions) of all the lamps. Each possible configuration must be written on a different line. Configurations may be listed in arbitrary order.

Each line has \mathbf{N} characters, where the first character represents the state of lamp 1 and the last character represents the state of lamp \mathbf{N}. A 0 (zero) stands for a lamp that is OFF, and a 1 (one) stands for a lamp that is ON.

Sample Output:
 0000000000
 0110110110
 0101010101

In this case, there are three possible final configurations:
either all lamps are OFF;
or lamps 1, 4, 7, 10 are OFF, and lamps 2, 3, 5, 6, 8, 9 are ON;
or lamps 1, 3, 5, 7, 9 are OFF, and lamps 2, 4, $6,8,10$ are ON .

Constraints

The parameters \mathbf{N} and \mathbf{C} are constrained by:

$$
\begin{aligned}
& 10 \leq \mathbf{N} \leq 100 \\
& 1 \leq \mathbf{C} \leq 10000
\end{aligned}
$$

The number of lamps you are informed to be ON, in the final configuration, is less than or equal to 2 .
The number of lamps you are informed to be OFF, in the final configuration, is less than or equal to 2 .
There is at least one possible final configuration for each input test file.

