$46^{\text {th }}$ International Mathematical Olympiad

Second Day
Merida, Mexico, Thursday 14 July 2005

Language: English

Problem 4. Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine all positive integers that are relatively prime to every term of the sequence.

Problem 5. Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let E and F be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.

Problem 6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $\frac{2}{5}$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

Time allowed: 4 hours 30 minutes

Each problem is worth 7 points

