$46^{\text {th }}$ International Mathematical Olympiad

First Day

Merida, Mexico, Wednesday 13 July 2005
Language: English

Problem 1. Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C ; B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$. These points are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.

Problem 2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.

Problem 3. Let x, y and z be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

Time allowed: 4 hours 30 minutes

