Problem 1

Let \(n \) be a positive integer. Let \(T \) be the set of points \((x, y)\) in the plane where \(x \) and \(y \) are non-negative integers and \(x + y < n \). Each point of \(T \) is coloured red or blue. If a point \((x, y)\) is red, then so are all points \((x', y')\) of \(T \) with both \(x' \leq x \) and \(y' \leq y \). Define an \(X \)-set to be a set of \(n \) blue points having distinct \(x \)-coordinates, and a \(Y \)-set to be a set of \(n \) blue points having distinct \(y \)-coordinates. Prove that the number of \(X \)-sets is equal to the number of \(Y \)-sets.

Problem 2

Let \(BC \) be a diameter of the circle \(\Gamma \) with centre \(O \). Let \(A \) be a point on \(\Gamma \) such that \(0^\circ < \angle AOB < 120^\circ \). Let \(D \) be the midpoint of the arc \(AB \) not containing \(C \). The line through \(O \) parallel to \(DA \) meets the line \(AC \) at \(J \). The perpendicular bisector of \(OA \) meets \(\Gamma \) at \(E \) and at \(F \). Prove that \(J \) is the incentre of the triangle \(CEF \).

Problem 3

Find all pairs of integers \(m, n \geq 3 \) such that there exist infinitely many positive integers \(a \) for which

\[
\frac{a^n + a - 1}{a^n + a^2 - 1}
\]

is an integer.

Problem 4

Let \(n \) be an integer greater than 1. The positive divisors of \(n \) are \(d_1, d_2, \ldots, d_k \) where \(1 = d_1 < d_2 < \cdots < d_k = n \). Define \(D = d_1d_2 + d_2d_3 + \cdots + d_{k-1}d_k \).

(a) Prove that \(D < n^2 \).

(b) Determine all \(n \) for which \(D \) is a divisor of \(n^2 \).

Problem 5

Find all functions \(f \) from the set \(r \) of real numbers to itself such that

\[
(f(x) + f(z)) (f(y) + f(t)) = f(xy - zt) + f(xt + yz)
\]

for all \(x, y, z, t \) in \(r \).

Problem 6

Let \(\Gamma_1, \Gamma_2, \ldots, \Gamma_n \) be circles of radius 1 in the plane, where \(n \geq 3 \). Denote their centres by \(O_1, O_2, \ldots, O_n \) respectively. Suppose that no line meets more than two of the circles. Prove that

\[
\sum_{1 \leq i < j \leq n} \frac{1}{O_i O_j} \leq \frac{(n-1)\pi}{4}.
\]
