Contents

1 Problems 1
1.1 Algebra 1
1.2 Combinatorics 3
1.3 Geometry 6
1.4 Number Theory 8
2 Algebra 9
A1 9
A2 12
A3 15
A4 17
A5 19
A6 21
3 Combinatorics 23
C1 23
C2 25
C3 26
C4 28
C5 29
C6 31
C7 32
C8 36
4 Geometry 39
G1 39
G2 41
G3 43
G4 45
G5 47
G6 49
G7 53
G8 55
5 Number Theory 57
N1 57
N2 59
N3 63
N4 65
N5 66
N6 68

Chapter 1

Problems

1.1 Algebra

A1. Let T denote the set of all ordered triples (p, q, r) of nonnegative integers. Find all functions $f: T \rightarrow \mathbb{R}$ such that

$$
f(p, q, r)= \begin{cases}0 & \text { if } p q r=0 \\ 1+\frac{1}{6}\{f(p+1, q-1, r)+f(p-1, q+1, r) \\ +f(p-1, q, r+1)+f(p+1, q, r-1) & \\ +f(p, q+1, r-1)+f(p, q-1, r+1)\} & \text { otherwise }\end{cases}
$$

A2. Let $a_{0}, a_{1}, a_{2}, \ldots$ be an arbitrary infinite sequence of positive numbers. Show that the inequality $1+a_{n}>a_{n-1} \sqrt[n]{2}$ holds for infinitely many positive integers n.

A3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove the inequality

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n} .
$$

A4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying

$$
f(x y)(f(x)-f(y))=(x-y) f(x) f(y)
$$

for all x, y.

A5. Find all positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{99}{100}=\frac{a_{0}}{a_{1}}+\frac{a_{1}}{a_{2}}+\cdots+\frac{a_{n-1}}{a_{n}}
$$

where $a_{0}=1$ and $\left(a_{k+1}-1\right) a_{k-1} \geq a_{k}^{2}\left(a_{k}-1\right)$ for $k=1,2, \ldots, n-1$.

A6. Prove that for all positive real numbers a, b, c,

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

1.2 Combinatorics

C1. Let $A=\left(a_{1}, a_{2}, \ldots, a_{2001}\right)$ be a sequence of positive integers. Let m be the number of 3-element subsequences $\left(a_{i}, a_{j}, a_{k}\right)$ with $1 \leq i<j<k \leq 2001$, such that $a_{j}=a_{i}+1$ and $a_{k}=a_{j}+1$. Considering all such sequences A, find the greatest value of m.

C2. Let n be an odd integer greater than 1 and let $c_{1}, c_{2}, \ldots, c_{n}$ be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.

C3. Define a k-clique to be a set of k people such that every pair of them are acquainted with each other. At a certain party, every pair of 3 -cliques has at least one person in common, and there are no 5 -cliques. Prove that there are two or fewer people at the party whose departure leaves no 3-clique remaining.

C4. A set of three nonnegative integers $\{x, y, z\}$ with $x<y<z$ is called historic if $\{z-y, y-x\}=\{1776,2001\}$. Show that the set of all nonnegative integers can be written as the union of pairwise disjoint historic sets.

C5. Find all finite sequences $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ such that for every $j, 0 \leq j \leq n, x_{j}$ equals the number of times j appears in the sequence.

C6. For a positive integer n define a sequence of zeros and ones to be balanced if it contains n zeros and n ones. Two balanced sequences a and b are neighbors if you can move one of the $2 n$ symbols of a to another position to form b. For instance, when $n=4$, the balanced sequences 01101001 and 00110101 are neighbors because the third (or fourth) zero in the first sequence can be moved to the first or second position to form the second sequence. Prove that there is a set S of at most $\frac{1}{n+1}\binom{2 n}{n}$ balanced sequences such that every balanced sequence is equal to or is a neighbor of at least one sequence in S.

C7. A pile of n pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column which contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a final configuration. For each n, show that, no matter what choices are made at each stage, the final configuration obtained is unique. Describe that configuration in terms of n.

Alternative Version. A pile of 2001 pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column which contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a final configuration. Show that, no matter what choices are made at each stage, the final configuration obtained is unique. Describe that configuration as follows: Determine the number, c, of nonempty columns, and for each $i=1,2, \ldots, c$, determine the number of pebbles p_{i} in column i, where column 1
is the leftmost column, column 2 the next to the right, and so on.

C8. Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that
(a) each contestant solved at most six problems, and
(b) for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy.

Show that there is a problem that was solved by at least three girls and at least three boys.

1.3 Geometry

G1. Let A_{1} be the center of the square inscribed in acute triangle $A B C$ with two vertices of the square on side $B C$. Thus one of the two remaining vertices of the square is on side $A B$ and the other is on $A C$. Points B_{1}, C_{1} are defined in a similar way for inscribed squares with two vertices on sides $A C$ and $A B$, respectively. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

G2. In acute triangle $A B C$ with circumcenter O and altitude $A P, \angle C \geq \angle B+30^{\circ}$. Prove that $\angle A+\angle C O P<90^{\circ}$.

G3. Let $A B C$ be a triangle with centroid G. Determine, with proof, the position of the point P in the plane of $A B C$ such that $A P \cdot A G+B P \cdot B G+C P \cdot C G$ is a minimum, and express this minimum value in terms of the side lengths of $A B C$.

G4. Let M be a point in the interior of triangle $A B C$. Let A^{\prime} lie on $B C$ with $M A^{\prime}$ perpendicular to $B C$. Define B^{\prime} on $C A$ and C^{\prime} on $A B$ similarly. Define

$$
p(M)=\frac{M A^{\prime} \cdot M B^{\prime} \cdot M C^{\prime}}{M A \cdot M B \cdot M C}
$$

Determine, with proof, the location of M such that $p(M)$ is maximal. Let $\mu(A B C)$ denote this maximum value. For which triangles $A B C$ is the value of $\mu(A B C)$ maximal?

G5. Let $A B C$ be an acute triangle. Let $D A C, E A B$, and $F B C$ be isosceles triangles exterior to $A B C$, with $D A=D C, E A=E B$, and $F B=F C$, such that

$$
\angle A D C=2 \angle B A C, \quad \angle B E A=2 \angle A B C, \quad \angle C F B=2 \angle A C B .
$$

Let D^{\prime} be the intersection of lines $D B$ and $E F$, let E^{\prime} be the intersection of $E C$ and $D F$, and let F^{\prime} be the intersection of $F A$ and $D E$. Find, with proof, the value of the sum

$$
\frac{D B}{D D^{\prime}}+\frac{E C}{E E^{\prime}}+\frac{F A}{F F^{\prime}}
$$

G6. Let $A B C$ be a triangle and P an exterior point in the plane of the triangle. Suppose $A P, B P, C P$ meet the sides $B C, C A, A B$ (or extensions thereof) in D, E, F, respectively. Suppose further that the areas of triangles $P B D, P C E, P A F$ are all equal. Prove that each of these areas is equal to the area of triangle $A B C$ itself.

G7. Let O be an interior point of acute triangle $A B C$. Let A_{1} lie on $B C$ with $O A_{1}$ perpendicular to $B C$. Define B_{1} on $C A$ and C_{1} on $A B$ similarly. Prove that O is the circumcenter of $A B C$ if and only if the perimeter of $A_{1} B_{1} C_{1}$ is not less than any one of the perimeters of $A B_{1} C_{1}, B C_{1} A_{1}$, and $C A_{1} B_{1}$.

G8. Let $A B C$ be a triangle with $\angle B A C=60^{\circ}$. Let $A P$ bisect $\angle B A C$ and let $B Q$ bisect $\angle A B C$, with P on $B C$ and Q on $A C$. If $A B+B P=A Q+Q B$, what are the angles of the triangle?

1.4 Number Theory

N1. Prove that there is no positive integer n such that, for $k=1,2, \ldots, 9$, the leftmost digit (in decimal notation) of $(n+k)$! equals k.

N2. Consider the system

$$
\begin{aligned}
x+y & =z+u \\
2 x y & =z u .
\end{aligned}
$$

Find the greatest value of the real constant m such that $m \leq x / y$ for any positive integer solution (x, y, z, u) of the system, with $x \geq y$.

N3. Let $a_{1}=11^{11}, a_{2}=12^{12}, a_{3}=13^{13}$, and

$$
a_{n}=\left|a_{n-1}-a_{n-2}\right|+\left|a_{n-2}-a_{n-3}\right|, \quad n \geq 4
$$

Determine $a_{14^{14}}$.

N4. Let $p \geq 5$ be a prime number. Prove that there exists an integer a with $1 \leq a \leq p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by p^{2}.

N5. Let $a>b>c>d$ be positive integers and suppose

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.

N6. Is it possible to find 100 positive integers not exceeding 25,000 , such that all pairwise sums of them are different?

Chapter 2

Algebra

Problem A1. Let T denote the set of all ordered triples (p, q, r) of nonnegative integers. Find all functions $f: T \rightarrow \mathbb{R}$ such that

$$
f(p, q, r)= \begin{cases}0 & \text { if } p q r=0 \\ 1+\frac{1}{6}\{f(p+1, q-1, r)+f(p-1, q+1, r) & \\ +f(p-1, q, r+1)+f(p+1, q, r-1) & \\ +f(p, q+1, r-1)+f(p, q-1, r+1)\} & \text { otherwise. }\end{cases}
$$

Solution. First, we will show that there is at most one function which satisfies the given conditions. Suppose that f_{1} and f_{2} are two such functions. Define $h=f_{1}-f_{2}$. Then $h: T \rightarrow \mathbb{R}$ satisfies

$$
h(p, q, r)= \begin{cases}0 & \text { if } p q r=0 \\ \frac{1}{6}\{h(p+1, q-1, r)+h(p-1, q+1, r) & \\ +h(p-1, q, r+1)+h(p+1, q, r-1) & \\ +h(p, q+1, r-1)+h(p, q-1, r+1)\} & \text { otherwise. }\end{cases}
$$

Observe that the second condition states that $h(p, q, r)$ is equal to the average of the values of h at the six points $(p+1, q-1, r)$, etc., which are the vertices of a regular hexagon with center at (p, q, r) lying in the plane $x+y+z=p+q+r$. It suffices to show that $h=0$ for all points in T. Let n be a positive integer. Consider the subset H
of the plane $x+y+z=n$ that lies in the "nonnegative" octant $\{(x, y, z): x, y, z \geq 0\}$. Suppose h attains its maximum on $H \cap T$ at (p, q, r). If $p q r=0$ then the maximum value for h on $H \cap T$ is 0 . If $p q r \neq 0$, the averaging property of h implies that the values of h on the six points $(p+1, q-1, r)$, etc. are all equal to $h(p, q, r)$. (The six points are all in H). In particular, h also attains its maximum at $(p+1, q-1, r)$. Repeating the argument (if necessary) using ($p+1, q-1, r$) as the center point, we see that

$$
h(p, q, r)=h(p+1, q-1, r)=h(p+2, q-2, r) .
$$

Continuing this process, we conclude that $h(p, q, r)=h(p+q, 0, r)=0$. Thus the maximum value of h on $H \cap T$ is 0 . By applying the same argument to the function $-h=f_{2}-f_{1}$, we see that the minimum value attained by h on $H \cap T$ is also 0 . Thus $h=0$ for all points in $H \cap T$. Varying n, we conclude that $h=0$ on all points in T. We will complete the solution by noting that $f: T \rightarrow \mathbb{R}$ defined by

$$
f(p, q, r)= \begin{cases}0 & \text { if } p q r=0 \\ \frac{3 p q r}{p+q+r} & \text { otherwise }\end{cases}
$$

satisfies both conditions of the problem, and is the unique solution.
Remark 1. One can guess the solution function in the following way: For any function f defined on T, define the function $A[f]$ by

$$
A[f](p, q, r)=\frac{1}{6}(f(p+1, q-1, r)+\cdots) .
$$

It is easy to check that if c is a constant, then

$$
A[c f]=c A[f] \quad \text { and } \quad A[c+f]=c+A[f] .
$$

Also note that if h is defined by $h(p, q, r)=f(p, q, r) /(p+q+r)$, then

$$
A[h](p, q, r)=\frac{A[f](p, q, r)}{p+q+r}
$$

We need to find a function f that satisfies the boundary conditions, as well as the second condition

$$
f=A[f]+1
$$

It is natural to start by considering $g(p, q, r)=p q r$, which satisfies the boundary conditions. We shall suitably modify this so that the second condition is also satisfied. Observe that

$$
A[g](p, q, r)=\frac{1}{6}(6 p q r-2(p+q+r))=g(p, q, r)-\frac{p+q+r}{3}
$$

Thus there is an extra term involving $p+q+r$. To take care of this, we divide $p q r$ by $p+q+r$ and consider the function $u(p, q, r)=p q r /(p+q+r)$. We have

$$
A[u](p, q, r)=\frac{A[g](p, q, r)}{p+q+r}=u(p, q, r)-\frac{1}{3}
$$

Thus

$$
A[3 u]=3 u-1,
$$

and hence $3 p q r /(p+q+r)$ satisfies the second condition.
Remark 2. One can consider the two-dimensional version of this problem, where $f(p, q)=0$ if $p q=0$ and $f(p, q)=1+[f(p+1, q-1)+f(p-1, q+1)] / 2$ otherwise. The unique solution is $f(p, q)=p q$.

Problem A2. Let $a_{0}, a_{1}, a_{2}, \ldots$ be an arbitrary infinite sequence of positive numbers. Show that the inequality $1+a_{n}>a_{n-1} \sqrt[n]{2}$ holds for infinitely many positive integers n.

Solution 1. Let $c_{0}, c_{1}, c_{2}, c_{3}, \ldots$ be the sequence defined by $c_{0}=1$ and

$$
c_{n}=\left(\frac{a_{n-1}}{1+a_{n}}\right) c_{n-1}, \quad n \geq 1
$$

Rewriting this as $c_{n}=a_{n-1} c_{n-1}-a_{n} c_{n}$, we obtain the telescoping sum

$$
\begin{equation*}
c_{1}+c_{2}+\cdots+c_{n}=a_{0}-a_{n} c_{n} \tag{*}
\end{equation*}
$$

The assertion of the problem is equivalent to: $c_{n} / c_{n-1}<2^{-1 / n}$ for infinitely many n. Assume to the contrary that there exists N such that the opposite inequality holds for all $n \geq N$. Then for $n>N$,

$$
c_{n} \geq c_{N} \cdot 2^{-\left(\frac{1}{N+1}+\frac{1}{N+2}+\cdots+\frac{1}{n}\right)}=C \cdot 2^{-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)},
$$

where $C=c_{N} \cdot 2^{1+\frac{1}{2}+\cdots+\frac{1}{N}}$ is a positive constant. If $2^{k-1} \leq n<2^{k}$, then

$$
\begin{aligned}
1+\frac{1}{2}+\cdots+\frac{1}{n} & \leq 1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\cdots+\frac{1}{7}\right)+\cdots+\left(\frac{1}{2^{k-1}}+\cdots+\frac{1}{2^{k}-1}\right) \\
& \leq 1+1+1+\cdots+1 \\
& =k
\end{aligned}
$$

so that

$$
c_{n} \geq C \cdot 2^{-k} \quad \text { for } \quad 2^{k-1} \leq n<2^{k}
$$

Let r be such that $2^{r-1} \leq N<2^{r}$, and let $m>r$. Then

$$
\begin{aligned}
c_{2^{r}}+c_{2^{r}+1}+\cdots+c_{2^{m}-1}= & \left(c_{2^{r}}+\cdots+c_{2^{r+1}-1}\right)+\left(c_{2^{r+1}}+\cdots+c_{2^{r+2}-1}\right) \\
& +\cdots+\left(c_{2^{m-1}}+\cdots+c_{2^{m}-1}\right) \\
\geq & C \cdot\left(2^{r} \cdot 2^{-r-1}+2^{r+1} \cdot 2^{-r-2}+\cdots+2^{m-1} \cdot 2^{-m}\right) \\
= & \frac{C \cdot(m-r)}{2}
\end{aligned}
$$

showing that the sum of the c_{n} can be made arbitrarily large. However, by $(*)$, this sum can never exceed a_{0}. This contradiction shows that $c_{n} / c_{n-1}<2^{-1 / n}$ for infinitely many n, as desired.

Solution 2. Arguing by contradiction, suppose there is N such that $1+a_{n} \leq a_{n-1} 2^{1 / n}$ for $n \geq N$. Multiply both sides by

$$
b_{n}=2^{-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)}
$$

to get

$$
b_{n}+A_{n} \leq A_{n-1},
$$

where $A_{n}=b_{n} a_{n}$.
Thus we have

$$
\begin{aligned}
& b_{N} \leq A_{N-1}-A_{N} \\
& b_{N+1} \leq A_{N}-A_{N+1} \\
& \vdots \quad \vdots \quad \vdots \\
& b_{n} \leq A_{n-1}-A_{n},
\end{aligned}
$$

and thus

$$
\sum_{j=N}^{n} b_{j} \leq A_{N-1}-A_{n} \leq A_{N-1}
$$

since the a_{j} are positive.
We shall show, however, that

$$
\sum_{n \geq N} b_{n}
$$

diverges. To see this, note that because $1 / x$ is monotone decreasing, a simple comparison of areas yields

$$
\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}<\int_{1}^{n} \frac{d x}{x}=\log n
$$

for any positive integer n. Hence

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}<1+\log n
$$

and

$$
b_{n}>2^{-1-\log n}=\frac{1}{2} n^{-\log 2}>\frac{1}{2 n}
$$

Because the harmonic series diverges (which can be proven by comparing areas as above, or with more elementary and well-known arguments), $\sum_{n \geq N} b_{n}$ diverges as well.

Problem A3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove the inequality

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n} .
$$

Solution 1. By the Cauchy-Schwarz inequality,

$$
a_{1}+a_{2}+\cdots+a_{n} \leq \sqrt{n} \sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

for any real numbers $a_{1}, a_{2}, \ldots, a_{n}$. Taking $a_{k}=x_{k} /\left(1+x_{1}^{2}+\cdots+x_{k}^{2}\right)$ for $k=$ $1,2, \cdots, n$, it suffices to prove that

$$
\left(\frac{x_{1}}{1+x_{1}^{2}}\right)^{2}+\left(\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}\right)^{2}+\cdots+\left(\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}\right)^{2}<1 .
$$

Observe that for $k \geq 2$,

$$
\begin{aligned}
\left(\frac{x_{k}}{1+x_{1}^{2}+\cdots+x_{k}^{2}}\right)^{2} & =\frac{x_{k}^{2}}{\left(1+x_{1}^{2}+\cdots+x_{k}^{2}\right)^{2}} \\
& \leq \frac{x_{k}^{2}}{\left(1+x_{1}^{2}+\cdots+x_{k-1}^{2}\right)\left(1+x_{1}^{2}+\cdots+x_{k}^{2}\right)} \\
& =\frac{1}{\left(1+x_{1}^{2}+\cdots+x_{k-1}^{2}\right)}-\frac{1}{\left(1+x_{1}^{2}+\cdots+x_{k}^{2}\right)}
\end{aligned}
$$

For $k=1$, similar reasoning yields the inequality

$$
\left(\frac{x_{1}}{1+x_{1}^{2}}\right)^{2} \leq 1-\frac{1}{1+x_{1}^{2}}
$$

Summing these inequalities, the right-hand side telescopes to yield

$$
\sum_{k=1}^{n}\left(\frac{x_{k}}{1+x_{1}^{2}+\cdots+x_{k}^{2}}\right)^{2} \leq 1-\frac{1}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<1 .
$$

Solution 2. Let

$$
a_{n}=\sup \left(\frac{x_{1}}{1+x_{1}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}\right)
$$

and

$$
b_{n}(r)=\sup \left(\frac{x_{1}}{r^{2}+x_{1}^{2}}+\cdots+\frac{x_{n}}{r^{2}+x_{1}^{2}+\cdots+x_{n}^{2}}\right)
$$

where the supremums are taken over all real x_{1}, \ldots, x_{n}. Replacing x_{i} by $r x_{i}$ in the second formula shows that $b_{n}(r)=a_{n} / r$ when $r>0$. Hence splitting off all but the first term gives

$$
a_{n}=\sup _{x_{1}}\left(\frac{x_{1}}{1+x_{1}^{2}}+\frac{a_{n-1}}{\sqrt{1+x_{1}^{2}}}\right) .
$$

The result now follows by induction once one shows $a_{1}=1 / 2<1$ and

$$
\frac{x}{1+x^{2}}+\frac{\sqrt{n}}{\sqrt{1+x^{2}}}<\sqrt{n+1}
$$

This latter inequality can be proven as follows: Without loss of generality, let x be positive (the inequality obviously holds for $x=0$ and negative x), and let $0<\theta<\pi / 2$ such that $\tan \theta=x$. Also choose $0<\alpha<\pi / 2$ such that $\tan \alpha=\sqrt{n}$. Then

$$
\begin{aligned}
\frac{x}{1+x^{2}}+\frac{\sqrt{n}}{\sqrt{1+x^{2}}} & =\sin \theta \cos \theta+\sqrt{n} \cos \theta \\
& <\sin \theta+\sqrt{n} \cos \theta \\
& =\sqrt{n+1}\left(\frac{1}{\sqrt{n+1}} \sin \theta+\frac{\sqrt{n}}{\sqrt{n+1}} \cos \theta\right) \\
& =\sqrt{n+1}(\cos \alpha \sin \theta+\sin \alpha \cos \theta) \\
& =\sqrt{n+1} \sin (\theta+\alpha) \\
& \leq \sqrt{n+1}
\end{aligned}
$$

Problem A4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying

$$
f(x y)(f(x)-f(y))=(x-y) f(x) f(y)
$$

for all x, y.
Solution. We wish to find all real-valued functions with real domain satisfying

$$
\begin{equation*}
f(x y)(f(x)-f(y))=(x-y) f(x) f(y) \tag{1}
\end{equation*}
$$

for all real x, y. Substituting $y=1$ into (1) yields

$$
\begin{equation*}
f(x)^{2}=x f(x) f(1) \tag{2}
\end{equation*}
$$

If $f(1)=0$, then $f(x)=0$ for all x. This satisfies (1), yielding one solution. Suppose then, that $f(1)=C \neq 0$. Equation (2) implies that $f(0)=0$. Now let G be a set of points x for which $f(x) \neq 0$. By (2),

$$
f(x)=x f(1) \quad \text { for all } \quad x \in G .
$$

Hence (1) can be satisfied only by functions satisfying

$$
f(x)= \begin{cases}C x & \text { if } x \in G \tag{3}\\ 0 & \text { if } x \notin G\end{cases}
$$

We must determine the structure of G so that the function defined by (3) satisfies (1) for all real x, y. It is easy to check that if $x \neq y$ and both x and y are elements of G, then the function defined by (3) satisfies (1) if and only if $x y \in G$. If neither x nor y are elements of G then (1) is satisfied. By symmetry, the only other case to look at is $x \in G, y \notin G$. In this case, (1) implies that

$$
f(x y) f(x)=0,
$$

which in turn implies that $f(x y)=0$. Thus:

$$
\begin{equation*}
\text { If } \quad x \in G, y \notin G, \quad \text { then } \quad x y \notin G . \tag{4}
\end{equation*}
$$

This implies the following facts about G :
(a) If $x \in G$, then $1 / x \in G$. This is true, for otherwise (4) forces $1 \notin G$, which is impossible (recall that we are assuming that $f(1) \neq 0$, so $1 \in G$).
(b) If $x, y \in G$, then $x y \in G$. By (a) above, $1 / x \in G$, so if $x y \notin G$, then (4) implies that $y=(x y)(1 / x) \notin G$, a contradiction.
(c) If $x, y \in G$, then $x / y \in G$. This follows easily from (a) and (b).

Consequently, G is a set that contains 1 , does not contain 0 , and is closed under multiplication and division. It is easy to check that any such set will satisfy (a) above (since $1 \in G$) and (4): If G is closed under multiplication and division and $x \in G, y \notin G$, then $x y \notin G$, for otherwise, $y=(x y) / x \in G$, a contradiction.

Therefore, closure under multiplication and division completely characterizes G, and we can finally write the full answer to the problem:

$$
f(x)= \begin{cases}C x & \text { if } x \in G \\ 0 & \text { if } x \notin G\end{cases}
$$

where C is an arbitrary fixed real number, and G is any subset of R that is closed under multiplication and division (i.e., any subgroup of the nonzero real numbers under multiplication). Note that $C=0$ yields the "trivial" solution derived earlier.

Problem A5. Find all positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{99}{100}=\frac{a_{0}}{a_{1}}+\frac{a_{1}}{a_{2}}+\cdots+\frac{a_{n-1}}{a_{n}}
$$

where $a_{0}=1$ and $\left(a_{k+1}-1\right) a_{k-1} \geq a_{k}^{2}\left(a_{k}-1\right)$ for $k=1,2, \ldots, n-1$.

Solution. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers satisfying the conditions of the problem. Then $a_{k}>a_{k-1}$, and hence $a_{k} \geq 2$ for $k=1,2, \ldots, n-1$. The inequality $\left(a_{k+1}-1\right) a_{k-1} \geq a_{k}^{2}\left(a_{k}-1\right)$ can be written in the form

$$
\frac{a_{k-1}}{a_{k}}+\frac{a_{k}}{a_{k+1}-1} \leq \frac{a_{k-1}}{a_{k}-1} .
$$

Summing these inequalities for $k=i+1, i+2, \ldots, n-1$, together with the obvious inequality $a_{n-1} / a_{n}<a_{n-1} /\left(a_{n}-1\right)$, we obtain

$$
\begin{equation*}
\frac{a_{i}}{a_{i+1}}+\frac{a_{i+1}}{a_{i+2}}+\cdots+\frac{a_{n-1}}{a_{n}}<\frac{a_{i}}{a_{i+1}-1} . \tag{*}
\end{equation*}
$$

We now determine $a_{1}, a_{2}, \ldots, a_{n}$. Using the sum given in the problem statement and $(*)$, with $i=0$, we obtain

$$
\frac{1}{a_{1}} \leq \frac{99}{100}<\frac{1}{a_{1}-1}
$$

so $a_{1}=2$. Using a similar approach with $i=1$ we find

$$
\frac{1}{a_{2}} \leq \frac{1}{a_{1}}\left(\frac{99}{100}-\frac{1}{a_{1}}\right)<\frac{1}{a_{2}-1}
$$

and it follows that $a_{2}=5$. Repeating this argument with $i=2$ and then $i=3$ we obtain

$$
\frac{1}{a_{3}} \leq \frac{1}{a_{2}}\left(\frac{99}{100}-\frac{1}{a_{1}}-\frac{a_{1}}{a_{2}}\right)<\frac{1}{a_{3}-1}
$$

from which $a_{3}=56$, and

$$
\frac{1}{a_{4}} \leq \frac{1}{a_{3}}\left(\frac{99}{100}-\frac{1}{a_{1}}-\frac{a_{1}}{a_{2}}-\frac{a_{2}}{a_{3}}\right)<\frac{1}{a_{4}-1}
$$

which implies that $a_{4}=25 \cdot 56^{2}=78400$. Continuing with the argument to determine a_{5} we find

$$
\frac{1}{a_{5}} \leq \frac{1}{a_{4}}\left(\frac{99}{100}-\frac{1}{2}-\frac{2}{5}-\frac{5}{56}-\frac{56}{25 \cdot 56^{2}}\right)=0
$$

which is impossible. It is easy to verify that the positive integers $a_{1}=2, a_{2}=5$, $a_{3}=56, a_{4}=25 \cdot 56^{2}$ satisfy the conditions of the problem. The preceding argument shows that the solution is unique.

Problem A6. Prove that for all positive real numbers a, b, c,

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

Solution. First we shall prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}} \geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}},
$$

or equivalently, that

$$
\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2} \geq a^{\frac{2}{3}}\left(a^{2}+8 b c\right)
$$

The AM-GM inequality yields

$$
\begin{aligned}
\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2}-\left(a^{\frac{4}{3}}\right)^{2} & =\left(b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)\left(a^{\frac{4}{3}}+a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right) \\
& \geq 2 b^{\frac{2}{3}} c^{\frac{2}{3}} \cdot 4 a^{\frac{2}{3}} b^{\frac{1}{3}} c^{\frac{1}{3}} \\
& =8 a^{\frac{2}{3}} c c .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}\right)^{2} \geq\left(a^{\frac{4}{3}}\right)^{2}+8 a^{\frac{2}{3}} b c & \\
& =a^{\frac{2}{3}}\left(a^{2}+8 b c\right)
\end{aligned}
$$

so

$$
\frac{a}{\sqrt{a^{2}+8 b c}} \geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}} .
$$

Similarly, we have

$$
\begin{aligned}
& \frac{b}{\sqrt{b^{2}+8 c a}} \geq \frac{b^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}} \quad \text { and } \\
& \frac{c}{\sqrt{c^{2}+8 a b}} \geq \frac{c^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}} .
\end{aligned}
$$

Adding these three inequalities yields

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

Comment. The proposer conjectures that for any $a, b, c>0$ and $\lambda \geq 0$, the following inequality holds:

$$
\frac{a}{\sqrt{a^{2}+\lambda b c}}+\frac{b}{\sqrt{b^{2}+\lambda c a}}+\frac{c}{\sqrt{c^{2}+\lambda a b}} \geq \frac{3}{\sqrt{1+\lambda}} .
$$

Chapter 3

Combinatorics

Problem C1. Let $A=\left(a_{1}, a_{2}, \ldots, a_{2001}\right)$ be a sequence of positive integers. Let m be the number of 3 -element subsequences $\left(a_{i}, a_{j}, a_{k}\right)$ with $1 \leq i<j<k \leq 2001$, such that $a_{j}=a_{i}+1$ and $a_{k}=a_{j}+1$. Considering all such sequences A, find the greatest value of m.

Solution. Consider the following two operations on the sequence A :
(1) If $a_{i}>a_{i+1}$, transpose these terms to obtain the new sequence $\left(a_{1}, a_{2}, \ldots, a_{i+1}, a_{i}, \ldots, a_{2001}\right)$.
(2) If $a_{i+1}=a_{i}+1+d$, where $d>0$, increase a_{1}, \ldots, a_{i} by d to obtain the new sequence $\left(a_{1}+d, a_{2}+d, \ldots, a_{i}+d, a_{i+1}, \ldots, a_{2001}\right)$.

It is clear that performing operation (1) cannot reduce m. By applying (1) repeatedly, the sequence can be rearranged to be nondecreasing. Thus we may assume that our sequence for which m is maximal is nondecreasing. Next, note that if A is nondecreasing, then performing operation (2) cannot reduce the value of m. It follows that any A with maximum m is of the form

$$
(\underbrace{a, \ldots, a}_{t_{1}}, \underbrace{a+1, \ldots, a+1}_{t_{2}}, \ldots, \underbrace{a+s-1, \ldots, a+s-1}_{t_{s}})
$$

where t_{1}, \ldots, t_{s} are the number of terms in each subsequence, and $s \geq 3$. For such a sequence A,

$$
\begin{equation*}
m=t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+\cdots+t_{s-2} t_{s-1} t_{s} \tag{*}
\end{equation*}
$$

It remains to find the best choice of s and the best partition of 2001 into positive integers t_{1}, \ldots, t_{s}.

The maximum value of m occurs when $s=3$ or $s=4$. If $s>4$ then we may increase the value given by $(*)$ by using a partition of 2001 into $s-1$ parts, namely

$$
t_{2}, t_{3},\left(t_{1}+t_{4}\right), \ldots, t_{s}
$$

Note that when $s=4$ this modification does not change the value given by $(*)$. Hence the maximum value m can be obtained with $s=3$. In this case, $m=t_{1} t_{2} t_{3}$ is largest when $t_{1}=t_{2}=t_{3}=2001 / 3=667$. Thus the maximum value of m is 667^{3}. This maximum value is attained when $s=4$ as well, in this case for sequences with $t_{1}=a, t_{2}=t_{3}=667$, and $t_{4}=667-a$, where $1 \leq a \leq 666$.

Problem C2. Let n be an odd integer greater than 1 and let $c_{1}, c_{2}, \ldots, c_{n}$ be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that n ! is a divisor of $S(a)-S(b)$.

Solution. Let $\sum S(a)$ be the sum of $S(a)$ over all $n!$ permutations $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. We compute $\sum S(a) \bmod n$! two ways, one of which depends on the desired conclusion being false, and reach a contradiction when n is odd.

First way. In $\sum S(a), c_{1}$ is multiplied by each $k \in\{1, \ldots, n\}$ a total of $(n-1)$! times, once for each permutation of $\{1, \ldots, n\}$ in which $a_{1}=k$. Thus the coefficient of c_{1} in $\sum S(a)$ is

$$
(n-1)!(1+2+\cdots+n)=(n+1)!/ 2
$$

The same is true for all c_{i}, so

$$
\begin{equation*}
\sum S(a)=\frac{(n+1)!}{2} \sum_{i=1}^{n} c_{i} . \tag{1}
\end{equation*}
$$

Second way. If n ! is not a divisor of $S(a)-S(b)$ for any $a \neq b$, then each $S(a)$ must have a different remainder mod $n!$. Since there are $n!$ permutations, these remainders must be precisely the numbers $0,1,2, \ldots, n!-1$. Thus

$$
\begin{equation*}
\sum S(a) \equiv \frac{(n!-1) n!}{2} \bmod n! \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get

$$
\begin{equation*}
\frac{(n+1)!}{2} \sum_{i=1}^{n} c_{i} \equiv \frac{(n!-1) n!}{2} \bmod n! \tag{3}
\end{equation*}
$$

Now, for n odd, the left side of (3) is congruent to 0 modulo n !, while for $n>1$ the right side is not congruent to $0(n!-1$ is odd). For $n>1$ and odd, we have a contradiction.

Problem C3. Define a k-clique to be a set of k people such that every pair of them are acquainted with each other. At a certain party, every pair of 3-cliques has at least one person in common, and there are no 5 -cliques. Prove that there are two or fewer people at the party whose departure leaves no 3 -clique remaining.

Solution. It is convenient to use the language of graph theory. Each person at the party is represented by a vertex, and there is an edge joining two vertices if the corresponding persons are acquainted. An m-clique then corresponds to a set of m vertices with each pair of vertices joined by an edge. In other words, the existence of such a clique means the given graph contains the complete graph K_{m} as a subgraph. In particular, a 3 -clique corresponds to a triangle $\left(K_{3}\right)$. We wish to prove that in any graph G in which any two triangles have at least one vertex in common and there is no K_{5}, there exist two or fewer vertices whose removal eliminates all triangles.

Let G be such a graph. The result is trivially true in case G has at most one triangle. Thus we have either (a) or (b) as shown below.

(a)

(b)

Suppose (a) occurs, and let $T_{1}=\{p, q, r\}$ and $T_{2}=\{r, s, t\}$. If the deletion of r destroys all triangles, we are done. Otherwise there is a third triangle T_{3} that is not destroyed by the removal of r, and this triangle must share a vertex with each of T_{1} and T_{2}. It is plain that any such triangle leads to an occurrence of (b) with $x=r$ and $u \in T_{1}, v \in T_{2}$. Thus we are left to consider case (b). Suppose (b) occurs, and now let $T_{1}=\{u, v, x\}$ and $T_{2}=\{u, v, y\}$. If the deletion of u and v destroys all triangles, we are done. Otherwise, for some $z \notin\{u, v, x, y\}$ there must be a triangle $T_{3}=\{x, y, z\}$. In particular, $x y$ is an edge. Now G contains the following subgraph.

(c)

We claim that the deletion of x and y destroys all triangles. Suppose not. Then there is a triangle T that is disjoint from $\{x, y\}$. Since T shares a vertex with $\{x, y, z\}$, T contains z. Similarly, T contains u since it shares a vertex with $\{x, y, u\}$ and T contains v since it shares a vertex with $\{x, y, v\}$. Thus $T=\{z, u, v\}$, but this is impossible since G contains no K_{5}. Hence there are always two or fewer vertices whose removal destroys all triangles.

Problem C4. A set of three nonnegative integers $\{x, y, z\}$ with $x<y<z$ is called historic if $\{z-y, y-x\}=\{1776,2001\}$. Show that the set of all nonnegative integers can be written as the union of pairwise disjoint historic sets.

Solution. For convenience let $a=1776$ and $b=2001$. All that we will really use about a and b is that $0<a<b$. Define

$$
\begin{aligned}
& A=\{0, a, a+b\} \\
& B=\{0, b, a+b\} .
\end{aligned}
$$

Note that both A and B are historic, and that a set X is historic if and only if $X=x+A$ or $X=x+B$ for some nonnegative integer x, where $x+S=\{x+s \mid s \in S\}$.

We will show how to construct an infinite sequence $X_{0}, X_{1}, X_{2}, \ldots$ of disjoint historic sets with the property that if k is the smallest nonnegative integer not included among X_{0} through X_{m}, then k belongs to X_{m+1}. Thus the union of this infinite sequence includes every nonnegative integer.

Take $X_{0}=A$. Assuming that we have constructed X_{0} through X_{m}, let k be the least element not occurring in their union, U. Then take $X_{m+1}=k+A$ if $k+a \notin U$ and $k+B$ otherwise. That is, always take $k+A$ first, if possible.

Why does this construction never fail? Suppose that we had carried it out to some point m, and then failed. Note that the smallest elements of X_{0} through X_{m} are all less than k (since at each stage we added a set whose smallest element was the first missing from the union of the earlier ones). Therefore the element $k+a+b$ is not in U. So the failure must be due to the fact that $k+b$ is covered by U. How was $k+b$ covered? For some $j \leq m$, it must have been the largest element of X_{j}. Let l denote the least element in X_{j}. Then $k+b=l+a+b$, so $k=l+a$. Since k is not covered, $X_{j}=l+B$. But by the algorithm, we cannot choose $X_{j}=l+B$ when $l+a$ is not covered, a contradiction. This contradiction shows that the construction can never fail.

Problem C5. Find all finite sequences $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ such that for every $j, 0 \leq j \leq$ n, x_{j} equals the number of times j appears in the sequence.

Solution. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be any such sequence. Since each x_{j} is the number of times j appears, the terms of the sequence are nonnegative integers. Note that $x_{0}>0$ since $x_{0}=0$ is a contradiction. Let m denote the number of positive terms among $x_{1}, x_{2}, \ldots, x_{n}$. Since $x_{0}=p \geq 1$ implies $x_{p} \geq 1$, we see that $m \geq 1$. Observe that $\sum_{i=1}^{n} x_{i}=m+1$ since the sum on the left counts the total number of positive terms of the sequence, and $x_{0}>0$. (Note. For every $j>0$ that appears as some x_{i}, the sequence is long enough to include a term x_{j} to count it, because the sequence contains j values of i and at least one other value, the value j itself if $i \neq j$ and the value 0 if $i=j$.) Since the sum has exactly m positive terms, $m-1$ of its terms equal 1 , one term equals 2 , and the remainder are 0 . Therefore only x_{0} can exceed 2 , so for $j>2$ the possibility that $x_{j}>0$ arises only in case $j=x_{0}$. In particular, $m \leq 3$. Hence there are three cases to consider. In each case, bear in mind that $m-1$ of the terms $x_{1}, x_{2}, \ldots, x_{n}$ equal 1 , one term equals 2 , and the the others are 0 .

Case (i): $m=1$. We have $x_{2}=2$ since $x_{1}=2$ is impossible. Thus $x_{0}=2$ and the final sequence is $(2,0,2,0)$.

Case (ii): $m=2$. Either $x_{1}=2$ or $x_{2}=2$. The first possibility leads to $(1,2,1,0)$ and the second one gives $(2,1,2,0,0)$.

Case (iii): $m=3$. In this case, $x_{p}>0$ for some $p \geq 3$. By the last sentence before Case (i), $x_{0}=p$ and $x_{p}=1$. Then $x_{1}=1$ is contradictory, so $x_{1}=2, x_{2}=1$, and we have accounted for all of the positive terms of the sequence. The resulting sequence is $(p, 2,1, \underbrace{0, \ldots, 0}_{p-3}, 1,0,0,0)$.

In summary, there are three special solutions and one infinite family:

$$
(2,0,2,0), \quad(1,2,1,0), \quad(2,1,2,0,0), \quad(p, 2,1, \underbrace{0, \ldots, 0}_{p-3}, 1,0,0,0), \quad p \geq 3 \text {. }
$$

Note. If one considers the null set to be a sequence, then it too is a solution.

Comment. An expanded version of the problem allows for infinite sequences, and such solutions exist. One simple construction starts with a finite solution $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$, sets $x_{n+1}=n+1$ and continues as shown:

$$
(x_{0}, x_{1}, \ldots, x_{n}, \underbrace{n+1, n+1, \ldots, n+1}_{x_{n+1}=n+1 \text { terms }}, \underbrace{n+2, n+2, \ldots, n+2}_{x_{n+2} \text { terms }}, \ldots)
$$

For example, $(1,2,1,0,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8, \ldots)$.

Problem C6. For a positive integer n define a sequence of zeros and ones to be balanced if it contains n zeros and n ones. Two balanced sequences a and b are neighbors if you can move one of the $2 n$ symbols of a to another position to form b. For instance, when $n=4$, the balanced sequences 01101001 and 00110101 are neighbors because the third (or fourth) zero in the first sequence can be moved to the first or second position to form the second sequence. Prove that there is a set S of at most $\frac{1}{n+1}\binom{2 n}{n}$ balanced sequences such that every balanced sequence is equal to or is a neighbor of at least one sequence in S.

Solution. For each balanced sequence $a=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$ let $f(a)$ be the sum of the positions of the 1's in a. For example, $f(01101001)=2+3+5+8=18$. Partition the $\binom{2 n}{n}$ balanced sequences into $n+1$ classes according to the residue of $f(\bmod n+1)$, and let S be a class of minimum size. Then $|S| \leq \frac{1}{n+1}\binom{2 n}{n}$, and we claim that every balanced sequence is either a member of S or is a neighbor of at least one member of S. Let $a=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$ be a given balanced sequence. We consider two cases.

Case (i): $a_{1}=1$. The balanced sequence $b=\left(b_{1}, b_{2}, \ldots, b_{2 n}\right)$ obtained from a by moving the leftmost 1 just to the right of the k th 0 satisfies $f(b)=f(a)+k$. (If a_{m+1} is the k th 0 of a, then in going from a to b, the leftmost 1 is moved up m places and $m-k$ 1's are moved back one place each.) Thus we find n neighbors of a so that the values of f for a and these neighbors fill an interval of $n+1$ consecutive integers. In particular, one of these $n+1$ balanced sequences belongs to S.

Case (ii): $a_{1}=0$. This case is similar. Movement of the initial 0 just to the right of the k th 1 yields a neighbor b satisfying $f(b)=f(a)-k$.

Hence every balanced sequence is either equal to or is a neighbor of at least one member of S.

Problem C7. A pile of n pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column which contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a final configuration. For each n, show that, no matter what choices are made at each stage, the final configuration obtained is unique. Describe that configuration in terms of n.

Alternative Version. A pile of 2001 pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column which contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a final configuration. Show that, no matter what choices are made at each stage, the final configuration obtained is unique. Describe that configuration as follows: Determine the number, c, of nonempty columns, and for each $i=1,2, \ldots, c$, determine the number of pebbles p_{i} in column i, where column 1 is the leftmost column, column 2 the next to the right, and so on.

Solution 1 of the First Version. At any stage, let p_{i} be the number of pebbles in column i for $i=1,2, \ldots$, where column 1 denotes the leftmost column. We will show that in the final configuration, for all i for which $p_{i}>0$ we have $p_{i}=p_{i+1}+1$, except that for at most one $i^{*}, p_{i^{*}}=p_{i^{*}+1}$. Therefore, the configuration looks like the figure shown below, where there are c nonempty columns and there are from 1 to c pebbles in the last diagonal row of the triangular configuration. In particular, let $t_{k}=1+2+\cdots+k=k(k+1) / 2$ be the k th triangular number. Then c is the unique integer for which $t_{c-1}<n \leq t_{c}$. Let $s=n-t_{c-1}$. Then there are s pebbles in the
rightmost diagonal, and so the two columns with the same height are columns $c-s$ and $c-s+1$ (except if $s=c$, in which case no nonempty columns have equal height).

Final Configuration for $n=12$

Another way to say this is

$$
p_{i}= \begin{cases}c-i & \text { if } i \leq c-s \tag{1}\\ c-i+1 & \text { if } i>c-s\end{cases}
$$

To prove this claim, we show that
(a) At any stage of the process, $p_{1} \geq p_{2} \geq \cdots$
(b) At any stage, it is not possible for there to be $i<j$ for which $p_{i}=p_{i+1}$, $p_{j}=p_{j+1}>0$, and $p_{i+1}-p_{j} \leq j-i-1$ (that is, the average decrease per column from column $i+1$ to column j is 1 or less).
(c) At any final configuration, $p_{i}-p_{i+1}=0$ or 1 , with at most one i for which $p_{i}>0$ and $p_{i}-p_{i+1}=0$.

In the proofs of (a)-(c), we use the following terminology. Let a k-switch be the movement of one pebble from column k to column $k+1$, and for any column i let a $d r o p$ be the quantity $p_{i}-p_{i+1}$.

To prove (a), suppose a sequence of valid moves resulted in $p_{i}<p_{i+1}$ for the first time at some stage j. Then the move leading to this stage must have been an i-switch, but it would be contrary to the condition that column i have at least 2 more pebbles than column $i+1$, to allow switches.

To prove (b), if such a configuration were obtainable, there would be a minimum value of $j-i$ over all such obtainable configurations, and we now show that there is no minimum. Suppose p_{1}, p_{2}, \ldots was such a minimal configuration. It cannot be that $j=i+1$, for what would columns $i, i+1, i+2$ look like just before the move that made the heights equal? The move must have been a k-switch for $i-1 \leq k \leq i+2$, but if so the configuration before the switch was impossible (not decreasing).

Now suppose $j>i+1$. Consider the first configuration C in the sequence for which columns $i, i+1, j, j+1$ are at their final heights. Note that from p_{i+1} to p_{j} the columns decrease by exactly one each time in C, because if there was a drop of 2 or more at some point, there would have to be another drop of 0 in this interval to obtain an average of 1 or less, and thus $j-i$ is not minimal. The move leading to C was either an i-switch or a j-switch. If it was the former, at the previous stage columns $i+1$ and $i+2$ had the same height, violating the minimality of $j-i$. A similar contradiction arises if the move was a j-switch.

Finally, to prove (c), if any drop is 2 or more, the configuration isn't final. However, if all drops are 0 or 1 , and there were two drops of 0 between nonempty columns (say between i and $i+1$ and between j and $j+1$), then (b) would be violated. Thus a final configuration that satisfied (b) also satisfies (c).

Solution of the Alternative Version. Same as above, except after display (1) insert:

Direct calculation shows that $2001=t_{63}-15$, so there are 63 nonempty columns and the final configuration is

$$
p_{i}= \begin{cases}63-i & \text { if } i \leq 15 \\ 64-i & \text { if } 16 \leq i \leq 63\end{cases}
$$

Solution 2 of the First Version. At each stage, let c be the rightmost nonempty column. In conditions (a)-(c) in the previous solution, replace (b) by (b^{\prime}), where
(b^{\prime}) All configurations obtainable from the initial configuration satisfy

$$
\begin{equation*}
p_{i}-p_{j} \geq j-i-1 \text { for all } i<j \leq c+1 \tag{2}
\end{equation*}
$$

(The restriction to $j \leq c+1$, which causes certain complications, is necessary for (2) to be true.) Fact (c), and thus the answer, follows as easily from (b^{\prime}) as from (b). We prove (b^{\prime}) by induction as follows.

Condition (2) is immediate for the initial configuration: Since $c=1$, the only case is $p_{1}-p_{2}=n>2-1-1$. Now suppose some configuration $p_{1}, p_{2} \ldots$ with final nonempty column c_{p} satisfies (2), and a new configuration $q_{1}, q_{2} \ldots$ is obtained from it by a k-switch. Thus $q_{k}=p_{k}-1, q_{k+1}=p_{k+1}+1$, and $q_{i}=p_{i}$ for all other i. Let the new configuration have c_{q} nonempty columns. Note that $c_{q}=c_{p}$ unless $k=c_{p}-1$.

For any $i<j \leq c_{q}+1$ we now show that $q_{i}-q_{j} \geq j-i-1$. The only cases to consider are those where $q_{i}-q_{j}<p_{i}-p_{j}$, that is, those where $i=k$ or $j=k+1$; and those where $p_{i}-p_{j}$ wasn't restricted, because j was greater than $c_{p}+1$ (case 4 below). There are four such cases.

Case 1. If $(i, j)=(k, k+1)$, then $q_{i}-q_{j} \geq 0=j-i-1$.
Case 2. If $i=k$ and $j>k+1$, apply (2) to $(i+1, j)$ to obtain

$$
q_{i}-q_{j} \geq q_{i+1}-q_{j}=p_{i+1}-p_{j}+1 \geq j-(i+1)-1+1=j-i-1
$$

Case 3. If $j=k+1$ and $i<k$, then applying (2) to $(i, j-1)$,

$$
q_{i}-q_{j} \geq q_{i}-q_{j-1}=p_{i}-p_{j-1}+1 \geq(j-1)-i-1+1=j-i-1
$$

Case 4. We have $j=c_{p}+2=k+2, p_{k+1}=0$ and $p_{k} \geq 2$. If $i=k$ or $k+1$, then $q_{i}-q_{j}=q_{i} \geq 1 \geq j-i-1$. If $i<k$, then

$$
q_{i}-q_{j}=p_{i}-0 \geq p_{i}-p_{k}+2 \geq(i-k-1)+2=i-j-1
$$

This concludes the inductive step and (b^{\prime}) is proved.

Problem C8. Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that
(a) each contestant solved at most six problems, and
(b) for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy.

Show that there is a problem that was solved by at least three girls and at least three boys.

Solution 1. We introduce the following symbols: G is the set of girls at the competition and B is the set of boys, P is the set of problems, $P(g)$ is the set of problems solved by $g \in G$, and $P(b)$ is the set of problems solved by $b \in B$. Finally, $G(p)$ is the set of girls that solve $p \in P$ and $B(p)$ is the set of boys that solve p. In terms of this notation, we have that for all $g \in G$ and $b \in B$,

$$
\text { (a) }|P(g)| \leq 6,|P(b)| \leq 6, \quad \text { (b) } P(g) \cap P(b) \neq \varnothing \text {. }
$$

We wish to prove that some $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$. To do this, we shall assume the contrary and reach a contradiction by counting (two ways) all ordered triples (p, q, r) such that $p \in P(g) \cap P(b)$. With $T=\{(p, g, b): p \in$ $P(g) \cap P(b)\}$, condition (b) yields

$$
\begin{equation*}
|T|=\sum_{g \in G} \sum_{b \in B}|P(g) \cap P(b)| \geq|G| \cdot|B|=21^{2} . \tag{1}
\end{equation*}
$$

Assume that no $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$. We begin by noting that

$$
\begin{equation*}
\sum_{p \in P}|G(p)|=\sum_{g \in G}|P(g)| \leq 6|G| \quad \text { and } \quad \sum_{p \in P}|B(p)| \leq 6|B| \tag{2}
\end{equation*}
$$

(Note. The equality in (2) is obtained by a standard double-counting technique: Let $\chi(g, p)=1$ if g solves p and $\chi(g, p)=0$ otherwise, and interchange the orders of
summation in $\sum_{p \in P} \sum_{g \in G} \chi(g, p)$.) Let

$$
\begin{aligned}
& P_{+}=\{p \in P:|G(p)| \geq 3\}, \\
& P_{-}=\{p \in P:|G(p)| \leq 2\} .
\end{aligned}
$$

Claim. $\sum_{p \in P_{-}}|G(p)| \geq|G| ;$ thus $\sum_{p \in P_{+}}|G(p)| \leq 5|G|$. Also $\sum_{p \in P_{+}}|B(p)| \geq|B|$; thus $\sum_{p \in P_{-}}|B(b)| \leq 5|B|$.

Proof. Let $g \in G$ be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply that g solves some problem p that is solved by at least $\lceil 21 / 6\rceil=4$ boys. By assumption, $|B(p)| \geq 4$ implies that $p \in P_{-}$, so every girl solves at least one problem in P_{-}. Thus

$$
\begin{equation*}
\sum_{p \in P_{-}}|G(p)| \geq|G| . \tag{3}
\end{equation*}
$$

In view of (2) and (3) we have

$$
\sum_{p \in P_{+}}|G(p)|=\sum_{p \in P}|G(p)|-\sum_{p \in P_{-}}|G(p)| \leq 5|G|
$$

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a problem $p \in P_{+}$. Thus $\sum_{p \in P_{+}}|B(p)| \geq|B|$, and the calculation proceeds as before using (2).

Using the claim just established, we find

$$
\begin{aligned}
|T| & =\sum_{p \in P}|G(p)| \cdot|B(p)| \\
& =\sum_{p \in P_{+}}|G(p)| \cdot|B(p)|+\sum_{p \in P_{-}}|G(p)| \cdot|B(p)| \\
& \leq 2 \sum_{p \in P_{+}}|G(p)|+2 \sum_{p \in P_{-}}|B(p)| \\
& \leq 10|G|+10|B|=20 \cdot 21 .
\end{aligned}
$$

This contradicts (1), so the proof is complete.

Solution 2. Let us use some of the notation given in the first solution. Suppose that for every $p \in P$ either $|G(p)| \leq 2$ or $|B(p)| \leq 2$. For each $p \in P$, color p red if $|G(p)| \leq 2$ and otherwise color it black. In this way, if p is red then $|G(p)| \leq 2$ and if p is black then $|B(p)| \leq 2$. Consider a chessboard with 21 rows, each representing one of the girls, and 21 columns, each representing one of the boys. For each $g \in G$ and $b \in B$, color the square corresponding to (g, b) as follows: pick $p \in P(g) \cap P(b)$ and assign p 's color to that square. (By condition (b), there is always an available choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least $\lceil 441 / 2\rceil=221$ squares, and thus some row has at least $\lceil 221 / 21\rceil=11$ black squares or some column has at least 11 red squares.

Suppose the row corresponding to $g \in G$ has at least 11 black squares. Then for each of 11 squares, the black problem that was chosen in assigning the color was solved by at most 2 boys. Thus we account for at least $\lceil 11 / 2\rceil=6$ distinct problems solved by g. In view of condition (a), g solves only these problems. But then at most 12 boys solve a problem also solved by g, in violation of condition (b).

In exactly the same way, a contradiction is reached if we suppose that some column has at least 11 red squares. Hence some $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$.

Chapter 4

Geometry

Problem G1. Let A_{1} be the center of the square inscribed in acute triangle $A B C$ with two vertices of the square on side $B C$. Thus one of the two remaining vertices of the square is on side $A B$ and the other is on $A C$. Points B_{1}, C_{1} are defined in a similar way for inscribed squares with two vertices on sides $A C$ and $A B$, respectively. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

Solution. Let $\alpha=\angle C A B, \beta=\angle A B C$, and $\gamma=\angle B C A$ be the angles of triangle $A B C$. Let the line through A and A_{1} meet side $B C$ at X. Similarly, let the line through B and B_{1} meet side $C A$ at Y, and the line through C and C_{1} meet side $A B$ at Z. By the converse of Ceva's Theorem, it suffices to prove that

$$
\frac{B X}{X C} \frac{C Y}{Y A} \frac{A Z}{Z B}=1
$$

Consider first $B X / X C$. Let the square with center A_{1} have side s, vertices P and Q on sides $A B$ and $A C$, respectively, and vertices S and T on $B C$ with S between B and T. Since $A X$ passes through the center of the square $Q P S T$, if it cuts side $P Q$ of the square into segments of length u and v, then it cuts side $S T$ into segments of length v and u as shown.

We then have

$$
\frac{B X}{X C}=\frac{u}{v}=\frac{B X+u}{X C+v}=\frac{B T}{S C}=\frac{B S+s}{T C+s}=\frac{s \cot \beta+s}{s \cot \gamma+s}=\frac{\cot \beta+1}{\cot \gamma+1}
$$

Similarly,

$$
\frac{C Y}{Y A}=\frac{\cot \gamma+1}{\cot \alpha+1} \quad \text { and } \quad \frac{A Z}{Z B}=\frac{\cot \alpha+1}{\cot \beta+1} .
$$

Hence

$$
\frac{B X}{X C} \frac{C Y}{Y A} \frac{A Z}{Z B}=1,
$$

completing the proof.

Problem G2. In acute triangle $A B C$ with circumcenter O and altitude $A P, \angle C \geq$ $\angle B+30^{\circ}$. Prove that $\angle A+\angle C O P<90^{\circ}$.

Solution 1. Let $\alpha=\angle C A B, \beta=\angle A B C, \gamma=\angle B C A$, and $\delta=\angle C O P$. Let K and Q be the reflections of A and P, respectively, across the perpendicular bisector of $B C$. Let R denote the circumradius of $\triangle A B C$. Then $O A=O B=O C=O K=R$. Furthermore, we have $Q P=K A$ because $K Q P A$ is a rectangle. Now note that $\angle A O K=\angle A O B-\angle K O B=\angle A O B-\angle A O C=2 \gamma-2 \beta \geq 60^{\circ}$.

It follows from this and from $O A=O K=R$ that $K A \geq R$ and $Q P \geq R$. Therefore, using the Triangle Inequality, we have $O P+R=O Q+O C>Q C=Q P+P C \geq$ $R+P C$. It follows that $O P>P C$, and hence in $\triangle C O P, \angle P C O>\delta$. Now since $\alpha=\frac{1}{2} \angle B O C=\frac{1}{2}\left(180^{\circ}-2 \angle P C O\right)=90^{\circ}-\angle P C O$, it indeed follows that $\alpha+\delta<90^{\circ}$.

Solution 2. As in the previous solution, it is enough to show that $O P>P C$. To this end, recall that by the (Extended) Law of Sines, $A B=2 R \sin \gamma$ and $A C=2 R \sin \beta$. Therefore, we have

$$
B P-P C=A B \cos \beta-A C \cos \gamma=2 R(\sin \gamma \cos \beta-\sin \beta \cos \gamma)=2 R \sin (\gamma-\beta) .
$$

It follows from this and from

$$
30^{\circ} \leq \gamma-\beta<\gamma<90^{\circ}
$$

that $B P-P C \geq R$. Therefore, we obtain that $R+O P=B O+O P>B P \geq R+P C$, from which $O P>O C$, as desired.

Solution 3. We first show that $R^{2}>C P \cdot C B$. To this end, since $C B=2 R \sin \alpha$ and $C P=A C \cos \gamma=2 R \sin \beta \cos \gamma$, it suffices to show that $\frac{1}{4}>\sin \alpha \sin \beta \cos \gamma$. We note that $1>\sin \alpha=\sin (\gamma+\beta)=\sin \gamma \cos \beta+\sin \beta \cos \gamma$ and $\frac{1}{2} \leq \sin (\gamma-\beta)=$ $\sin \gamma \cos \beta-\sin \beta \cos \gamma$ since $30^{\circ} \leq \gamma-\beta<90^{\circ}$. It follows that $\frac{1}{4}>\sin \beta \cos \gamma$ and that $\frac{1}{4}>\sin \alpha \sin \beta \cos \gamma$.

Now we choose a point J on $B C$ so that $C J \cdot C P=R^{2}$. It follows from this and from $R^{2}>C P \cdot C B$ that $C J>C B$, so that $\angle O B C>\angle O J C$. Since $O C / C J=$ $P C / C O$ and $\angle J C O=\angle O C P$, we have $\triangle J C O \cong \triangle O C P$ and $\angle O J C=\angle P O C=\delta$. It follows that $\delta<\angle O B C=90^{\circ}-\alpha$ or $\alpha+\delta<90^{\circ}$.

Solution 4. On the one hand, as in the third solution, we have $R^{2}>C P \cdot C B$. On the other hand, the power of P with respect to the circumcircle of $\triangle A B C$ is $B P \cdot P C=R^{2}-O P^{2}$. From these two equations we find that

$$
O P^{2}=R^{2}-B P \cdot P C>P C \cdot C B-B P \cdot P C=P C^{2}
$$

from which $O P>P C$. Therefore, as in the first solution, we conclude that $\alpha+\delta<$ 90°.

Problem G3. Let $A B C$ be a triangle with centroid G. Determine, with proof, the position of the point P in the plane of $A B C$ such that $A P \cdot A G+B P \cdot B G+C P \cdot C G$ is a minimum, and express this minimum value in terms of the side lengths of $A B C$.

Solution. As usual, let a, b, c denote the sides of the triangle facing the vertices A, B, C, respectively. We will show that the desired minimum value of $A P \cdot A G+$ $B P \cdot B G+C P \cdot C G$ is attained when P is the centroid G, and that the minimum value is

$$
\begin{aligned}
A G^{2}+B G^{2}+C G^{2} & =\frac{1}{9}\left\{\left(2 b^{2}+2 c^{2}-a^{2}\right)+\left(2 c^{2}+2 a^{2}-b^{2}\right)+\left(2 c^{2}+2 a^{2}-b^{2}\right)\right\} \\
& =\frac{a^{2}+b^{2}+c^{2}}{3} .
\end{aligned}
$$

The latter follows by using Stewart's Theorem to compute the lengths of the medians $A L, B M, C N$, along with the relations $A G=\frac{2}{3} A L, B G=\frac{2}{3} B M, C G=\frac{2}{3} C N$.

Let \mathcal{S} be the circle passing through B, G, and C. The median $A L$ meets \mathcal{S} at G and K. Let θ, ϕ, χ be the angle measures as shown.

By the Law of Sines, we find

$$
\frac{B G}{C G}=\frac{\sin \varphi}{\sin \theta} \quad \text { and } \quad \frac{A G}{B G}=\frac{\sin \chi}{\sin \varphi}
$$

Also $B K=2 R \sin \theta, C K=2 R \sin \varphi, B C=2 R \sin \chi$, where R is the radius of \mathcal{S}. Hence

$$
\begin{equation*}
\frac{C G}{B K}=\frac{B G}{C K}=\frac{A G}{B C} \tag{*}
\end{equation*}
$$

Let P be any point in the plane of $A B C$. By Ptolemy's Theorem,

$$
P K \cdot B C \leq B P \cdot C K+B K \cdot C P,
$$

with equality if and only if P lies on \mathcal{S}. In view of $(*)$, we have

$$
P K \cdot A G \leq B P \cdot B G+C G \cdot C P
$$

Addition of $A P \cdot A G$ to both sides gives

$$
(A P+P K) \cdot A G \leq A P \cdot A G+B P \cdot B G+C P \cdot C G
$$

Since $A K \leq A P+A K$ by the Triangle Inequality, we have

$$
A K \cdot A G \leq A P \cdot A G+B P \cdot B G+C P \cdot C G
$$

Equality holds if and only if P lies on the segment $A K$ and P lies on \mathcal{S} as well. Hence equality holds if and only if $P=G$.

Problem G4. Let M be a point in the interior of triangle $A B C$. Let A^{\prime} lie on $B C$ with $M A^{\prime}$ perpendicular to $B C$. Define B^{\prime} on $C A$ and C^{\prime} on $A B$ similarly. Define

$$
p(M)=\frac{M A^{\prime} \cdot M B^{\prime} \cdot M C^{\prime}}{M A \cdot M B \cdot M C}
$$

Determine, with proof, the location of M such that $p(M)$ is maximal. Let $\mu(A B C)$ denote this maximum value. For which triangles $A B C$ is the value of $\mu(A B C)$ maximal?

Solution. Let α, β, γ denote the angles A, B, C respectively. Also let

$$
\begin{array}{ll}
\alpha_{1}=\angle M A B, & \alpha_{2}=\angle M A C, \\
\beta_{1}=\angle M B C, & \beta_{2}=\angle M B A, \\
\gamma_{1}=\angle M C A, & \gamma_{2}=\angle M C B .
\end{array}
$$

We have
$\frac{M B^{\prime} \cdot M C^{\prime}}{(M A)^{2}}=\sin \alpha_{1} \sin \alpha_{2}, \quad \frac{M B^{\prime} \cdot M A^{\prime}}{(M C)^{2}}=\sin \gamma_{1} \sin \gamma_{2}, \quad \frac{M A^{\prime} \cdot M C^{\prime}}{(M B)^{2}}=\sin \beta_{1} \sin \beta_{2}$,
so that $p(M)^{2}=\sin \alpha_{1} \sin \alpha_{2} \sin \beta_{1} \sin \beta_{2} \sin \gamma_{1} \sin \gamma_{2}$. Observe that

$$
\begin{equation*}
\sin \alpha_{1} \sin \alpha_{2}=\frac{1}{2}\left(\cos \left(\alpha_{1}-\alpha_{2}\right)-\cos \left(\alpha_{1}+\alpha_{2}\right)\right) \leq \frac{1}{2}(1-\cos \alpha)=\sin ^{2} \frac{\alpha}{2} \tag{1}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
\sin \beta_{1} \sin \beta_{2} \leq \sin ^{2} \frac{\beta}{2} \quad \text { and } \quad \sin \gamma_{1} \sin \gamma_{2} \leq \sin ^{2} \frac{\gamma}{2} \tag{2}
\end{equation*}
$$

Therefore

$$
p(M) \leq \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} .
$$

Clearly, equality is achieved in (1) and (2) if and only if $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}, \gamma_{1}=\gamma_{2}$; in other words, $p(M)$ achieves its maximum value when M is the center of the inscribed circle of triangle $A B C$ and this maximum value is

$$
\mu(A B C)=\sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} .
$$

It is well known that this quantity is maximal when the triangle is equilateral. This can be proven in many ways; for example, using Jensen's inequality. A more elementary proof uses the first equality of (1) to deduce that if $x, y \geq 0$ and $x+y \leq \pi / 2$ is fixed, the value of $\sin x \sin y$ will increase as the difference $|x-y|$ decreases. Thus, if $x+y+z=\pi / 2$, the value of $\sin x \sin y \sin z$ can be increased if any of the x, y, z are not equal to $\pi / 6$. (For example, if $x<\pi / 6$ and $z>\pi / 6$ and x is closer to $\pi / 6$ than z is, replace x by $x^{\prime}=\pi / 6$ and z by $z^{\prime}=z-\pi / 6+x$. The sum $x^{\prime}+y+z^{\prime}$ remains unchanged, but the product $\sin x^{\prime} \sin y \sin z^{\prime}$ increases.)
Comment. The Jury may wish to consider an alternative version of this problem, which asks only the first of the two questions (i.e., only asks for the location of $M)$. This would avoid a situation in which some students laboriously prove that $\sin x \sin y \sin z$ is maximized when $x=y=z$, while others use Jensen's inequality, and still others merely state, as the proposer did, that the result is well known.

Problem G5. Let $A B C$ be an acute triangle. Let $D A C, E A B$, and $F B C$ be isosceles triangles exterior to $A B C$, with $D A=D C, E A=E B$, and $F B=F C$, such that

$$
\angle A D C=2 \angle B A C, \quad \angle B E A=2 \angle A B C, \quad \angle C F B=2 \angle A C B .
$$

Let D^{\prime} be the intersection of lines $D B$ and $E F$, let E^{\prime} be the intersection of $E C$ and $D F$, and let F^{\prime} be the intersection of $F A$ and $D E$. Find, with proof, the value of the sum

$$
\frac{D B}{D D^{\prime}}+\frac{E C}{E E^{\prime}}+\frac{F A}{F F^{\prime}}
$$

Solution. Note that $\angle A D C, \angle B E A, \angle C F B<\pi$ since $A B C$ is an acute triangle. Also,

$$
\angle D A C=\frac{\pi}{2}-\frac{1}{2} \angle A D C=\frac{\pi}{2}-\angle B A C
$$

and

$$
\angle B A E=\frac{\pi}{2}-\frac{1}{2} \angle B E A=\frac{\pi}{2}-\angle A B C .
$$

Hence

$$
\angle D A E=\angle D A C+\angle B A C+\angle B A E=\pi-\angle A B C<\pi .
$$

Likewise,

$$
\angle E B F<\pi \quad \text { and } \quad \angle F C D<\pi .
$$

Thus the polygon $D A E B F C$ is convex and

$$
\angle A D C+\angle B E A+\angle C F B=2(\angle B A C+\angle A B C+\angle A C B)=2 \pi .
$$

Let $\omega_{1}, \omega_{2}, \omega_{3}$ be circles with centers at D, E, F, respectively, and radii $D A, E B, F C$, respectively. Using $\angle A D C+\angle B E A+\angle C F B=2 \pi$, it is easy to see by the Inscribed Angle Theorem that these three circles are concurrent; let O be the common point. Then O is the reflection of C with respect to $D F$. Likewise, O is also the reflection of A with respect to $D E$ and the reflection of B with respect to $E F$. Let $[X Y Z]$ denote the area of triangle $X Y Z$. We have

$$
\frac{D B}{D D^{\prime}}=\frac{D D^{\prime}+D^{\prime} B}{D D^{\prime}}=1+\frac{D^{\prime} B}{D D^{\prime}}=1+\frac{[E B F]}{[D E F]}=1+\frac{[O E F]}{[D E F]}
$$

Likewise,

$$
\frac{E C}{E E^{\prime}}=1+\frac{[O D F]}{[D E F]} \text { and } \frac{F A}{F F^{\prime}}=1+\frac{[O D E]}{[D E F]}
$$

Thus

$$
\frac{D B}{D D^{\prime}}+\frac{E C}{E E^{\prime}}+\frac{F A}{F F^{\prime}}=3+\frac{[O E F]+[O D F]+[O D E]}{[D E F]}=4
$$

Problem G6. Let $A B C$ be a triangle and P an exterior point in the plane of the triangle. Suppose $A P, B P, C P$ meet the sides $B C, C A, A B$ (or extensions thereof) in D, E, F, respectively. Suppose further that the areas of triangles $P B D, P C E, P A F$ are all equal. Prove that each of these areas is equal to the area of triangle $A B C$ itself.

Solution 1. Let D, E, and F divide the sides $B C, C A$, and $A B$ in the signed ratios $z / y, x / z$, and y / x, respectively. Since $A D, B E$, and $C F$ are concurrent (at P), by Ceva's Theorem we may choose the ratios in this manner. Let us assume that $[A B C]=1$, where $[U V W]$ denotes the signed area of $\triangle U V W$. Note that for P to lie outside the triangle at least one of x, y, z must be positive and at least one must be negative. Also,

$$
\frac{[P B C]}{x}=\frac{[P C A]}{y}=\frac{[P A B]}{z}=\frac{[A B C]}{x+y+z} .
$$

Now

$$
[P B D]=\frac{[P B D]}{[P B C]} \frac{[P B C]}{[A B C]}[A B C]=\frac{z}{y+z} \frac{x}{x+y+z}=\frac{z x}{(y+z)(x+y+z)}
$$

Similarly,

$$
[P C E]=\frac{x y}{(z+x)(x+y+z)} \quad \text { and } \quad[P A F]=\frac{y z}{(x+y)(x+y+z)}
$$

Since these three areas are equal, we have $y(y+z)=z(z+x)=x(x+y)$. We may assume at this stage that $z=1$. This yields

$$
y(y+1)=1+x=x(x+y)
$$

So $x=y^{2}+y-1$ from the first equation, and hence we have $\left(y^{2}+y-1\right)^{2}+\left(y^{2}+y-1\right) y=$ $y^{2}+y$. Simplification gives $y^{4}+3 y^{3}-y^{2}-4 y+1=0$, which can be factored as

$$
(y-1)\left(y^{3}+4 y^{2}+3 y-1\right)=0
$$

If $y=1$, then we have $x=1$, implying that P coincides with the centroid of $\triangle A B C$, contradicting the hypothesis that P lies outside the triangle.

Therefore,

$$
y^{3}+4 y^{2}+3 y-1=0
$$

Using this fact, it follows that

$$
\begin{aligned}
{[P B D] } & =\frac{z x}{(y+z)(x+y+z)}=\frac{x}{(1+y)(x+y+1)} \\
& =\frac{y^{2}+y-1}{(y+1)\left(y^{2}+2 y\right)}=\frac{y^{2}+y-1}{y^{3}+3 y^{2}+2 y}=\frac{y^{2}+y-1}{-y^{2}-y+1}=-1 \\
{[P C E] } & =\frac{x y}{(z+x)(x+y+z)}=\frac{x y}{(x+1)(x+y+1)} \\
& =\frac{\left(y^{2}+y-1\right) y}{\left(y^{2}+y\right)\left(y^{2}+2 y\right)}=\frac{y^{2}+y-1}{y^{3}+3 y^{2}+2 y}=-1 \\
{[P A F] } & =\frac{y z}{(x+y)(x+y+z)}=\frac{y}{(x+y)(x+y+1)} \\
& =\frac{y}{\left(y^{2}+2 y-1\right)\left(y^{2}+2 y\right)}=\frac{1}{y^{3}+4 y^{2}+3 y-2}=\frac{1}{-1}=-1 .
\end{aligned}
$$

These calculations also imply that not both x and y are positive. Hence P lies outside $\triangle A B C$. Moreover, $[P B D]=[P C E]=[P A F]=-1=-[A B C]$. Hence, the desired result. The negative sign only indicates that triangles $P B D, P C E$, and $P A F$ are oriented opposite to $\triangle A B C$.

Comment. Since the equation $y^{3}+4 y^{2}+3 y-1=0$ can be solved to get three real roots in terms of $\cos \frac{2 \pi}{7}, \cos \frac{4 \pi}{7}$, and $\cos \frac{6 \pi}{7}$, we see that there are three real positions of P lying outside $\triangle A B C$.

Solution 2. Let P be a point outside $\triangle A B C$ as shown in the diagram, and let D, E, and F be the points at which $P A, P B$, and $P C$ meet the sides $B C, C A$, and $A B$, respectively. Let $[B P D]=[C P E]=[A P F]=x,[A B E]=u,[P A E]=v$, and $[B C E]=w$, so that $[B A D]=x-u-v$. We wish to prove that $x=[A B C]=u+w$.

Now, each of the ratios, $B D / D C, C E / E A$, and $A F / F B$ can be computed in two ways, yielding the following equations:

$$
\begin{gather*}
\frac{x-u-v}{x-v+w}=\frac{x}{2 x+w} \tag{1}\\
\frac{x}{v}=\frac{w}{u} \tag{2}\\
\frac{x}{x+u+v}=\frac{2 x+v}{2 x+u+v+w} \tag{3}
\end{gather*}
$$

Equation (1) gives $\frac{x}{2 x+w}=\frac{u+v}{x+v}$. Simplifying and substituting for v from (2), we obtain

$$
x^{2}(w-u)=u w(3 x+w) .
$$

Again, simplifying (3) and using (2), we get

$$
x=\frac{w\left(w^{2}-u w-u^{2}\right)}{u(2 w+u)} .
$$

Eliminating x from the last two equations, we finally obtain

$$
(w-u)(w+u)\left(w^{3}-3 u w^{2}-4 u^{2} w-u^{3}\right)=0 .
$$

But $w=u$ gives $v=x$ (from (2)). So (3) gives $\frac{x}{2 x+u}=\frac{3 x}{3 x+2 u}$; i.e., $2 x+u=x+\frac{2 u}{3}$, which is false since the left side of this is larger than its right side. Clearly, we can also rule out $w+u=0$. Hence, $w^{3}-3 u w^{2}-4 u^{2} w-u^{3}=0$, yielding

$$
w^{3}=u(3 w+u)(w+u)
$$

Finally, we have

$$
\begin{aligned}
x & =\frac{w^{3}-u w^{2}-u^{2} w}{2 u w+u^{2}}=\frac{u(3 w+u)(w+u)-u w(u+w)}{u(2 w+u)} \\
& =\frac{u(u+w)(2 w+u)}{u(2 w+u)}=u+w,
\end{aligned}
$$

as desired.

Problem G7. Let O be an interior point of acute triangle $A B C$. Let A_{1} lie on $B C$ with $O A_{1}$ perpendicular to $B C$. Define B_{1} on $C A$ and C_{1} on $A B$ similarly. Prove that O is the circumcenter of $A B C$ if and only if the perimeter of $A_{1} B_{1} C_{1}$ is not less than any one of the perimeters of $A B_{1} C_{1}, B C_{1} A_{1}$, and $C A_{1} B_{1}$.

Solution. If O is the circumcenter of $\triangle A B C$, then A_{1}, B_{1}, and C_{1} are the midpoints of $B C, C A$, and $A B$, respectively, and hence $P_{A_{1} B_{1} C_{1}}=P_{A B_{1} C_{1}}=P_{B C_{1} A_{1}}=P_{C A_{1} B_{1}}$, where $P_{X Y Z}$ denotes the perimeter of $\triangle X Y Z$.

Conversely, suppose that $P_{A_{1} B_{1} C_{1}} \geq P_{A B_{1} C_{1}}, P_{B C_{1} A_{1}}, P_{C A_{1} B_{1}}$. Let

$$
\begin{array}{lll}
\angle C A B=\alpha, & \angle C A_{1} B_{1}=\alpha_{1}, & \angle B A_{1} C_{1}=\alpha_{2}, \\
\angle A B C=\beta, & \angle A B_{1} C_{1}=\beta_{1}, & \angle C B_{1} A_{1}=\beta_{2}, \\
\angle B C A=\gamma, & \angle B C_{1} A_{1}=\gamma_{1}, & \angle A C_{1} B_{1}=\gamma_{2} .
\end{array}
$$

Let A_{2} be the point of intersection of the lines through B_{1} and C_{1}, which are parallel to $A B$ and $A C$, respectively, as shown in the figure above. Assume that $\gamma_{1} \geq \alpha$
and $\beta_{2} \geq \alpha$. If one of these inequalities is strict, then A_{1} is an interior point of $\triangle B_{1} C_{1} A_{2}$. Hence $P_{A_{1} B_{1} C_{1}}<P_{A_{2} B_{1} C_{1}}=P_{A B_{1} C_{1}}$, which is a contradiction. If $\gamma_{1}=\alpha$ and $\beta_{2}=\alpha$, then $A_{1}=A_{2}$ and therefore $B_{1} O \perp A_{1} C_{1}$ and $C_{1} O \perp A_{1} B_{1}$. Hence O is the orthocenter (intersection of the altitudes) of $\triangle A_{1} B_{1} C_{1}$, and thus $O A_{1} \perp B_{1} C_{1}$. Hence $B_{1} C_{1} \| B C$. This implies that A_{1}, B_{1}, and C_{1} are the midpoints of $B C, C A$, and $A B$, respectively; i.e., triangles $A B_{1} C_{1}, A_{1} B_{1} C_{1}, A_{1} B_{1} C$, and $A_{1} B C_{1}$ are congruent. Hence, O is the circumcenter of $\triangle A B C$. Analogously, the same conclusion holds if $\alpha_{1} \geq \beta$ and $\gamma_{2} \geq \beta$, or $\beta_{1} \geq \gamma$ and $\alpha_{2} \geq \gamma$.

Suppose now that none of these cases are satisfied; i.e., it is not true that

$$
\gamma_{1} \geq \alpha \quad \text { and } \quad \beta_{2} \geq \alpha
$$

or

$$
\alpha_{1} \geq \beta \quad \text { and } \quad \gamma_{2} \geq \beta
$$

or

$$
\beta_{1} \geq \gamma \quad \text { and } \quad \alpha_{2} \geq \gamma
$$

Suppose without loss of generality that $\gamma_{1}<\alpha$. Then $\alpha_{2}>\gamma$, since $\gamma_{1}+\alpha_{2}=\pi-\beta=$ $\alpha+\gamma$. Hence $\beta_{1}<\gamma$, which implies that $\gamma_{2}>\beta$. Hence $\alpha_{1}<\beta$, implying that $\beta_{2}>\alpha$. In conclusion,

$$
\gamma_{1}<\alpha<\beta_{2}, \quad \alpha_{1}<\beta<\gamma_{2}, \quad \text { and } \quad \beta_{1}<\gamma<\alpha_{2}
$$

Since $A C_{1} O B_{1}$ and $A_{1} C B_{1} O$ are cyclic, we have $\angle A O B_{1}=\gamma_{2}$ and $\angle C O B_{1}=\alpha_{1}$. Hence, $A O=O B_{1} / \cos \gamma_{2}>O B_{1} / \cos \alpha_{1}=C O$. In the same way, the inequalities $\gamma_{1}<\beta_{2}$ and $\beta_{1}<\alpha_{2}$ imply that $C O>B O$ and $B O>A O$, a contradiction.

Comment. The same arguments show that O is the circumcenter of $\triangle A B C$ if and only if $P_{A_{1} B_{1} C_{1}} \leq P_{A B_{1} C_{1}}, P_{B C_{1} A_{1}}, P_{C A_{1} B_{1}}$.

Problem G8. Let $A B C$ be a triangle with $\angle B A C=60^{\circ}$. Let $A P$ bisect $\angle B A C$ and let $B Q$ bisect $\angle A B C$, with P on $B C$ and Q on $A C$. If $A B+B P=A Q+Q B$, what are the angles of the triangle?

Solution. Denote the angles of $A B C$ by $\alpha=60^{\circ}, \beta$, and γ. Extend $A B$ to P^{\prime} so that $B P^{\prime}=B P$, and construct $P^{\prime \prime}$ on $A Q$ so that $A P^{\prime \prime}=A P^{\prime}$. Then $B P^{\prime} P$ is an isosceles triangle with base angle $\beta / 2$. Since $A Q+Q P^{\prime \prime}=A B+B P^{\prime}=A B+B P=A Q+Q B$, it follows that $Q P^{\prime \prime}=Q B$. Since $A P^{\prime} P^{\prime \prime}$ is equilateral and $A P$ bisects the angle at A, we have $P P^{\prime}=P P^{\prime \prime}$.

Claim. Points $B, P, P^{\prime \prime}$ are collinear, so $P^{\prime \prime}$ coincides with C.

Proof. Suppose to the contrary that $B P P^{\prime \prime}$ is a nondegenerate triangle. We have that $\angle P B Q=\angle P P^{\prime} B=\angle P P^{\prime \prime} Q=\beta / 2$. Thus the diagram appears as below, or else with P is on the other side of $B P^{\prime \prime}$. In either case, the assumption that $B P P^{\prime \prime}$ is nondegenerate leads to $B P=P P^{\prime \prime}=P P^{\prime}$, thus to the conclusion that $B P P^{\prime}$ is equilateral, and finally to the absurdity $\beta / 2=60^{\circ}$ so $\alpha+\beta=60^{\circ}+120^{\circ}=180^{\circ}$.

Thus points $B, P, P^{\prime \prime}$ are collinear, and $P^{\prime \prime}=C$ as claimed.

Since triangle $B C Q$ is isosceles, we have $120^{\circ}-\beta=\gamma=\beta / 2$, so $\beta=80$ and $\gamma=40^{\circ}$. Thus $A B C$ is a 60-80-40 degree triangle.

Chapter 5

Number Theory

Problem N1. Prove that there is no positive integer n such that, for $k=1,2, \ldots, 9$, the leftmost digit (in decimal notation) of $(n+k)$! equals k.

Solution. For each positive integer m, define

$$
N(m)=\frac{m}{10^{d(m)-1}},
$$

where $d(m)$ is the number of digits in m. Note that $1 \leq N(m)<10$. In addition, it is not hard to show that

$$
\begin{equation*}
N(l m) \leq N(l) N(m) \tag{1}
\end{equation*}
$$

for positive integers l and m.
Assume now that n is a positive integer such that for $k=1,2, \ldots, 9$, the leftmost digit of $(n+k)$! is k. If $2 \leq k \leq 9$, then $(n+k)!=a \times 10^{r}$ for some nonnegative integer r and some real number a with $k<a<k+1$, and $(n+k-1)!=b \times 10^{s}$ where $k-1<b<k$ and s is a nonnegative integer. We then have

$$
\begin{equation*}
1<N(n+k)=N\left(\frac{(n+k)!}{(n+k-1)!}\right)=\frac{a}{b}<\frac{k+1}{k-1} \leq 3 \tag{2}
\end{equation*}
$$

Now $N(m) \geq N(m+1)$ can only happen if $N(m) \geq 9$. Hence it follows from (2) that

$$
1<N(n+2)<\cdots<N(n+9) \leq \frac{5}{4} .
$$

Using (1) we then have

$$
\begin{aligned}
& N((n+2)!) \leq N((n+1)!) N(n+2)<2 \cdot \frac{5}{4} \\
& N((n+3)!) \leq N((n+2)!) N(n+3)<2\left(\frac{5}{4}\right)^{2} \\
& N((n+4)!) \leq N((n+3)!) N(n+4)<2\left(\frac{5}{4}\right)^{3}<4
\end{aligned}
$$

contradicting the assumption that $(n+4)$! has leftmost digit of 4 .
Therefore there is no positive integer n such that for $k=1,2, \ldots, 9$, the leftmost digit of $(n+k)$! is k.

Problem N2. Consider the system

$$
\begin{aligned}
x+y & =z+u \\
2 x y & =z u .
\end{aligned}
$$

Find the greatest value of the real constant m such that $m \leq x / y$ for any positive integer solution (x, y, z, u) of the system, with $x \geq y$.

Solution 1. Squaring the first equation and then subtracting four times the second, we obtain

$$
x^{2}-6 x y+y^{2}=(z-u)^{2},
$$

from which

$$
\begin{equation*}
\left(\frac{x}{y}\right)^{2}-6\left(\frac{x}{y}\right)+1=\left(\frac{z-u}{y}\right)^{2} . \tag{*}
\end{equation*}
$$

The quadratic $\omega^{2}-6 \omega+1$ takes the value 0 for $\omega=3 \pm 2 \sqrt{2}$, and is positive for $\omega>3+2 \sqrt{2}$. Because $x / y \geq 1$ and the right side of $(*)$ is a square, the left side of $(*)$ is positive, and we must have $x / y>3+2 \sqrt{2}$. We now show that x / y can be made as close to $3+2 \sqrt{2}$ as we like, so the desired $m=3+2 \sqrt{2}$. We prove this by showing that the term $((z-u) / y)^{2}$ in $(*)$ can be made as small as we like.

To this end, we first find a way to generate solutions of the system. If p is a prime divisor of z and u, then p is a divisor of both x and y. Thus we may assume, without loss of generality, that z and u are relatively prime. If we square both sides of the first equation, then subtract twice the second equation we have

$$
(x-y)^{2}=z^{2}+u^{2} .
$$

Thus $(z, u, x-y)$ is a primitive Pythagorean triple, and we may assume that u is even. Hence there are relatively prime positive integers a and b, one of them even and the other odd, such that

$$
z=a^{2}-b^{2}, \quad u=2 a b, \quad \text { and } \quad x-y=a^{2}+b^{2} .
$$

Combining these equations with $x+y=z+u$, we find that

$$
x=a^{2}+a b \quad \text { and } \quad y=a b-b^{2} .
$$

Observe that $z-u=a^{2}-b^{2}-2 a b=(a-b)^{2}-2 b^{2}$. When $z-u=1$, we get the Pell equation $1=(a-b)^{2}-2 b^{2}$, which has solution $a-b=3, b=2$. By well known facts, this equation has infinitely many positive integer solutions $a-b$ and b, and both of these quantities can be made arbitrarily large. It follows that $y=a b-b^{2}$ can be made arbitrarily large. Hence the right side of $(*)$ can be made as small as we like, and the corresponding value of x / y can be made as close to $3+2 \sqrt{2}$ as we like. Note. This solution can be shortened somewhat by using a different method for generating solutions. Note that if (t, y) satisfies the Pell equation $t^{2}-2 y^{2}=1$ and we set $x=3 y+2 t, z=2 y+t+1, u=2 y+t-1$, then $x+y=4 y+2 t=z+u$ and $2 x y=2(3 y+2 t) y=6 y^{2}+4 t y=(2 y+t)^{2}-1=z u$. It follows as before that there are solutions with $x / y=3+2 t / y$ as close to $3+2 \sqrt{2}$ as desired.

Solution 2. As in the first solution, we find that $(x-y)^{2}=u^{2}+z^{2}$. Hence there is a right triangle with sides $a=u$ and $b=z$ and hypotenuse $c=x-y$. Let $A B C$ be such a triangle with $A B=c, A C=b$, and $B C=a$. Let I be the incenter of the triangle, let r be the inradius, and let Z be the point at which the incircle is tangent to $A B$. Let $C T$ be the bisector of angle C, with T on $A B$, let $C H$ be the altitude to $A B$, and let C^{\prime} be the midpoint of $A B$.

Because triangle $A B C$ is right, $r=I Z=s-c$, where $s=(a+b+c) / 2$ is the semiperimeter of the triangle. Thus, $a+b=2 r+c=2 r+x-y$. Using this with $a+b=u+z=x+y$ we obtain $y=r$ and $x=s$. We now prove that for any values of a and b,

$$
\begin{equation*}
\frac{x}{y}=\frac{s}{r} \geq(\sqrt{2}+1)^{2} \tag{1}
\end{equation*}
$$

To show this, observe that $C C^{\prime} \geq C T \geq C I+I Z$, so

$$
\frac{s-r}{2}=\frac{c}{2} \geq(\sqrt{2}+1) r .
$$

It follows that

$$
\frac{s}{r} \geq 2 \sqrt{2}+3=(\sqrt{2}+1)^{2}
$$

which establishes (1). Equality holds only if the triangle is isosceles, but in that case the sides cannot all be of integral length. Thus the inequality in (1) is strict. On the other hand, $C H \leq C I+I Z$ so $2 r s / c \leq(\sqrt{2}+1) r$. Hence

$$
\begin{equation*}
\frac{x}{y}=\frac{s}{r} \leq(\sqrt{2}+1)^{2}\left(\frac{c^{2}}{4 s r}\right) \tag{2}
\end{equation*}
$$

However,

$$
\begin{equation*}
\frac{c^{2}}{4 s r}=\frac{a^{2}+b^{2}}{2 a b}=1+\frac{(a-b)^{2}}{2 a b} \tag{3}
\end{equation*}
$$

Because there are infinitely Pythagorean triples (a, b, c) with $a-b=1$, it follows from (3) that $c^{2} /(4 r s)$ can be made as close to 1 as we like. It then follows from (1) and (2) that the maximal value for m is $3+2 \sqrt{2}$.

Solution 3 (Sketch). Solve the first equation for u, substitute in the second, then divide by y^{2} to get

$$
\left(\frac{z}{y}\right)^{2}-\left(\frac{z}{y}\right)\left(\frac{x}{y}\right)-\left(\frac{z}{y}\right)+2\left(\frac{x}{y}\right)=0 .
$$

Let $X=x / y$ and $Z=z / y$ to obtain

$$
\begin{equation*}
Z^{2}-Z X-Z+2 X=0 \tag{*}
\end{equation*}
$$

Equation $(*)$ describes a hyperbola in the (X, Z)-plane. The asymptotes of the hyperbola have slope 0 and 1 . One branch of the hyperbola lies in the half plane $X \geq 1$, the other in the half plane $X<1$. Furthermore, the leftmost point on the branch in the half plane $X \geq 1$ has coordinates $(3+2 \sqrt{2}, 2+\sqrt{2})$. Thus, if (X, Z) is on the hyperbola and $X \geq 1$, then $X \geq 3+2 \sqrt{2}$, and this bound cannot be improved. Because ($*$) has rational coefficients and the hyperbola described by ($*$) has a point with rational coordinates, it has infinitely many points with rational coordinates. In particular, let r be a rational number, $r \neq 0$ or 1 . Then the line with equation $y=r x$ intersects the hyperbola described by $(*)$ in the points $(0,0)$ and $\left(\frac{r-2}{r^{2}-r}, \frac{r^{2}-2 r}{r^{2}-r}\right)$. If $0<r<1$, then the latter point is on the right branch of the hyperbola, so has (rational) X coordinate $\frac{r-2}{r^{2}-r}>3+2 \sqrt{2}$. Furthermore, if r is close to

$$
\frac{2+\sqrt{2}}{3+2 \sqrt{2}}=2-\sqrt{2}
$$

then this X-coordinate is close to $3+2 \sqrt{2}$. Finally, if X and Z are positive rationals satisfying $(*)$, then we can find integers x, y, and z with $X=x / y$ and $Z=z / y$. It is easy to check that x, y, z, and $u=x+y-z$ are positive integers that satisfy the equations in the problem statement. Thus if x, y, z and u are positive integers that satisfy the equations in the statement, and $x \geq y$, then $x / y>3+2 \sqrt{2}$. Furthermore, this lower bound is best possible.

Problem N3. Let $a_{1}=11^{11}, a_{2}=12^{12}, a_{3}=13^{13}$, and

$$
a_{n}=\left|a_{n-1}-a_{n-2}\right|+\left|a_{n-2}-a_{n-3}\right|, \quad n \geq 4
$$

Determine $a_{14^{14}}$.

Solution. For $n \geq 2$, define $s_{n}=\left|a_{n}-a_{n-1}\right|$. Then for $n \geq 5, a_{n}=s_{n-1}+s_{n-2}$ and $a_{n-1}=s_{n-2}+s_{n-3}$, and hence $s_{n}=\left|s_{n-1}-s_{n-3}\right|$. Because $s_{n} \geq 0$, it follows that if $\max \left\{s_{n}, s_{n+1}, s_{n+2}\right\} \leq T$, then $s_{m} \leq T$ for all $m \geq n$. In particular, the sequence $\left(s_{n}\right)$ is bounded. We now prove the following claim.

Claim. If $\max \left\{s_{i}, s_{i+1}, s_{i+2}\right\}=T \geq 2$ for some i, then $\max \left\{s_{i+6}, s_{i+7}, s_{i+8}\right\} \leq T-1$.
Proof. If this were not the case, then $\max \left\{s_{j}, s_{j+1}, s_{j+2}\right\}=T \geq 2$ for $j=i, i+1, i+$ $2, \ldots, i+6$. We show by contradiction that this cannot happen. If the claim were false, then for $j=i, i+1$, or $i+2$ the sequence $s_{j}, s_{j+1}, s_{j+2}, \ldots$ would have the form

$$
T, x, y, T-y, \ldots
$$

with $0 \leq x, y \leq T$, and $\max \{x, y, T-y\}=T$. Hence either $x=T$ or $y=T$ or $y=0$. We consider each case:
(a) If $x=T$, then the sequence has the form $T, T, y, T-y, y, \ldots$ Because $\max \{y, T-y, y\}=T$ we must have $y=0$ or $y=T$.
(b) If $y=0$, then the sequence takes the form $T, x, 0, T, T-x, T-x, x, \ldots$ Hence $\max \{x, T-x\}=T$, so $x=0$ or $x=T$.
(c) If $y=T$, then the sequence is $T, x, T, 0, x, T-x, \ldots$

We then have $\max \{x, T-x\}=T$, so $x=0$ or $x=T$.
In each case we find that both x and y must be either 0 or T. In particular, T must divide each of s_{i}, s_{i+1}, and s_{i+2}, which implies that T divides s_{n} for all $n \geq 2$. However, because $s_{2}=12^{12}-11^{11}$ and $s_{4}=11^{11}$ are relatively prime we have a contradiction. This establishes the claim.

Now let $M=14^{14}$ and $N=13^{13}$. From the bound $\max \left\{s_{2}, s_{3}, s_{4}\right\} \leq N$, we use the claim to deduce inductively that $\max \left\{s_{6 N+2}, s_{6 N+3}, s_{6 N+4}\right\}=1$. In particular $s_{n}=0$ or 1 for $n \geq 6 N+2$. Hence $a_{n}=s_{n-1}+s_{n-2}$ may only take on the values 0 , 1 , or 2 when $n \geq M>6 N+4$. In particular, $a_{M}=0,1$, or 2 . Now the recursion for a_{n} implies that

$$
a_{n} \equiv\left(a_{n-1}-a_{n-2}\right)+\left(a_{n-2}-a_{n-3}\right) \equiv a_{n-1}-a_{n-3} \quad(\bmod 2) .
$$

From the initial values for a_{1}, a_{2}, and a_{3} it can be easily shown that modulo 2 , the sequence $\left(a_{n}\right)$ is periodic with period 7 , and that a_{7} is odd. Because 14^{14} is a multiple of 7 , we conclude that $a_{M}=1$.

Problem N4. Let $p \geq 5$ be a prime number. Prove that there exists an integer a with $1 \leq a \leq p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by p^{2}.

Solution. Let $S=\{1,2, \ldots, p-1\}$ and let $A=\left\{a \in S: a^{p-1} \not \equiv 1\left(\bmod p^{2}\right)\right\}$. We prove that $|A| \geq(p-1) / 2$, where $|A|$ denotes the number of elements in A. Indeed, if $1 \leq a \leq p-1$, then the Binomial Theorem gives

$$
(p-a)^{p-1}-a^{p-1} \equiv-(p-1) a^{p-2} p \not \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Thus at least one of a and $p-a$ is in A. In particular, $p-1 \in A$ because $1 \notin A$. Now let $p=2 k+1, k \geq 2$, and consider the $k-1$ pairs of numbers $\{(2,3),(4,5), \ldots$, $(2 k-2,2 k-1)\}$. If there exists an $i, 1 \leq i \leq k-1$, such that $2 i \in A$ and $2 i+1 \in A$, then the conditions of the problem are satisfied. If not, then at least one entry of each pair $(2 i, 2 i+1), 1 \leq i \leq k-1$, is in A. Because $1 \notin A$ and $|A| \geq(p-1) / 2=k$, exactly one element of each such pair is in A. Consider now the pair $(2 k-2,2 k-1)$.

If $2 k-1=p-2 \in A$ then we are done because $p-1 \in A$. (Note that this is the case if $p=5$.) If $2 k-1=p-2 \notin A$, then $p-3=2 k-2 \in A$, so the conditions of the problem will be satisfied if we show that $2 k-3 \in A$. Suppose also that $2 k-3 \notin A$. Because $p-2 \notin A$ we have

$$
\begin{equation*}
1 \equiv(p-2)^{p-1} \equiv 2^{p-1}-(p-1) 2^{p-2} p \equiv 2^{p-1}+p 2^{p-2} \quad\left(\bmod p^{2}\right) \tag{1}
\end{equation*}
$$

Squaring the first and last expressions in (1), we obtain

$$
\begin{equation*}
4^{p-1}+p 2^{2 p-2} \equiv 1 \quad\left(\bmod p^{2}\right) \tag{2}
\end{equation*}
$$

Also, because $2 k-3=p-4 \notin A$,

$$
\begin{equation*}
1 \equiv(p-4)^{p-1} \equiv 4^{p-1}-(p-1) 4^{p-2} p \equiv 4^{p-1}+p 4^{p-2} \quad\left(\bmod p^{2}\right) \tag{3}
\end{equation*}
$$

Subtracting the first and last expressions of (3) from (2), we obtain $3 p 4^{p-2} \equiv 0$ $\left(\bmod p^{2}\right)$, a contradiction. Thus, if $p \geq 7$ and $p-2 \notin A$, then $p-4 \in A$. In particular, if $p-3 \in A$, then $p-4$ and $p-3$ satisfy the conditions of the problem.

Problem N5. Let $a>b>c>d$ be positive integers and suppose

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.
Solution 1. Suppose to the contrary that $a b+c d$ is prime. Note that

$$
a b+c d=(a+d) c+(b-c) a=m \cdot \operatorname{gcd}(a+d, b-c)
$$

for some positive integer m. By assumption, either $m=1$ or $\operatorname{gcd}(a+d, b-c)=1$. We consider these alternatives in turn.

Case (i): $m=1$. Then

$$
\begin{aligned}
\operatorname{gcd}(a+d, b-c) & =a b+c d>a b+c d-(a-b+c+d) \\
& =(a+d)(c-1)+(b-c)(a+1) \\
& \geq \operatorname{gcd}(a+d, b-c),
\end{aligned}
$$

which is false.
Case (ii): $\operatorname{gcd}(a+d, b-c)=1$. Substituting $a c+b d=(a+d) b-(b-c) a$ for the left-hand side of $a c+b d=(b+d+a-c)(b+d-a+c)$, we obtain

$$
(a+d)(a-c-d)=(b-c)(b+c+d)
$$

In view of this, there exists a positive integer k such that

$$
\begin{array}{r}
a-c-d=k(b-c) \\
b+c+d=k(a+d)
\end{array}
$$

Adding these equations, we obtain $a+b=k(a+b-c+d)$ and thus $k(c-d)=$ $(k-1)(a+b)$. Recall that $a>b>c>d$. If $k=1$ then $c=d$, a contradiction. If $k \geq 2$ then

$$
2 \geq \frac{k}{k-1}=\frac{a+b}{c-d}>2
$$

a contradiction.
Since a contradiction is reached in both (i) and (ii), $a b+c d$ is not prime.

Solution 2. The equality $a c+b d=(b+d+a-c)(b+d-a+c)$ is equivalent to

$$
\begin{equation*}
a^{2}-a c+c^{2}=b^{2}+b d+d^{2} \tag{1}
\end{equation*}
$$

Let $A B C D$ be the quadrilateral with $A B=a, B C=d, C D=b, A D=c, \angle B A D=$ 60°, and $\angle B C D=120^{\circ}$. Such a quadrilateral exists in view of (1) and the Law of Cosines; the common value in (1) is $B D^{2}$. Let $\angle A B C=\alpha$, so that $\angle C D A=180^{\circ}-\alpha$. Applying the Law of Cosines to triangles $A B C$ and $A C D$ gives

$$
a^{2}+d^{2}-2 a d \cos \alpha=A C^{2}=b^{2}+c^{2}+2 b c \cos \alpha .
$$

Hence $2 \cos \alpha=\left(a^{2}+d^{2}-b^{2}-c^{2}\right) /(a d+b c)$, and

$$
A C^{2}=a^{2}+d^{2}-a d \frac{a^{2}+d^{2}-b^{2}-c^{2}}{a d+b c}=\frac{(a b+c d)(a c+b d)}{a d+b c} .
$$

Because $A B C D$ is cyclic, Ptolemy's Theorem gives

$$
(A C \cdot B D)^{2}=(a b+c d)^{2}
$$

It follows that

$$
\begin{equation*}
(a c+b d)\left(a^{2}-a c+c^{2}\right)=(a b+c d)(a d+b c) . \tag{2}
\end{equation*}
$$

(Note. Also straightforward algebra can be used obtain (2) from (1).) Next observe that

$$
\begin{equation*}
a b+c d>a c+b d>a d+b c . \tag{3}
\end{equation*}
$$

The first inequality follows from $(a-d)(b-c)>0$, and the second from $(a-b)(c-d)>0$.
Now assume that $a b+c d$ is prime. It then follows from (3) that $a b+c d$ and $a c+b d$ are relatively prime. Hence, from (2), it must be true that $a c+b d$ divides $a d+b c$. However, this is impossible by (3). Thus $a b+c d$ must not be prime.

Note. Examples of 4-tuples (a, b, c, d) that satisfy the given conditions are $(21,18,14,1)$ and (65,50, 34, 11).

Problem N6. Is it possible to find 100 positive integers not exceeding 25,000 , such that all pairwise sums of them are different?

Solution. Yes. The desired result is an immediate consequence of the following fact.
Lemma. For any odd prime number p there exist p positive integers not exceeding $2 p^{2}$ for which the pairwise sums of the integers are all different.

Proof. Consider the p numbers $f_{n}=2 p n+\left(n^{2}\right), n=0,1,2, \ldots, p-1$, where $\left(a^{2}\right)$ denotes the remainder when a^{2} is divided by p. Because $0 \leq\left(a^{2}\right) \leq p-1$,

$$
\begin{equation*}
\left\lfloor\frac{f_{m}+f_{n}}{2 p}\right\rfloor=m+n \tag{*}
\end{equation*}
$$

Assume that $f_{m}+f_{n}=f_{k}+f_{l}$. From ($*$) it follows that $m+n=k+l$ and hence that $\left(m^{2}\right)+\left(n^{2}\right)=\left(k^{2}\right)+\left(l^{2}\right)$, that is, $m^{2}+n^{2} \equiv k^{2}+l^{2}(\bmod p)$. The conditions

$$
n+m \equiv k+l \quad(\bmod p), \quad n^{2}+m^{2} \equiv k^{2}+l^{2} \quad(\bmod p)
$$

$0 \leq n, m, k, l \leq p-1$, imply that the pairs $\{m, n\}$ and $\{k, l\}$ are the same. Thus, if $\{m, n\} \neq\{k, l\}$, then $f_{n}+f_{m} \neq f_{k}+f_{l}$. This completes the proof of the lemma.

Applying the lemma with $p=101$, we obtain a set of 101 numbers not exceeding $2 \cdot 101^{2}<25000$, all of whose pairwise sums are different.

