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Chapter 1

Problems

1.1 Algebra

A1. Let T denote the set of all ordered triples (p, q, r) of nonnegative integers. Find

all functions f : T → R such that

f(p, q, r) =





0 if pqr = 0,

1 + 1
6
{f(p + 1, q − 1, r) + f(p− 1, q + 1, r)

+f(p− 1, q, r + 1) + f(p + 1, q, r − 1)

+f(p, q + 1, r − 1) + f(p, q − 1, r + 1)} otherwise.

A2. Let a0, a1, a2, . . . be an arbitrary infinite sequence of positive numbers. Show

that the inequality 1 + an > an−1
n
√

2 holds for infinitely many positive integers n.

A3. Let x1, x2, . . . , xn be arbitrary real numbers. Prove the inequality

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · ·+ xn

1 + x2
1 + · · ·+ x2

n

<
√

n.

1



2 CHAPTER 1. PROBLEMS

A4. Find all functions f : R→ R, satisfying

f(xy)(f(x)− f(y)) = (x− y)f(x)f(y)

for all x, y.

A5. Find all positive integers a1, a2, . . . , an such that

99

100
=

a0

a1

+
a1

a2

+ · · ·+ an−1

an

,

where a0 = 1 and (ak+1 − 1)ak−1 ≥ a2
k(ak − 1) for k = 1, 2, . . . , n− 1.

A6. Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.
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1.2 Combinatorics

C1. Let A = (a1, a2, . . . , a2001) be a sequence of positive integers. Let m be the

number of 3-element subsequences (ai, aj, ak) with 1 ≤ i < j < k ≤ 2001, such that

aj = ai +1 and ak = aj +1. Considering all such sequences A, find the greatest value

of m.

C2. Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers. For each

permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =
∑n

i=1 ciai. Prove that

there exist permutations a 6= b of {1, 2, . . . , n} such that n! is a divisor of S(a)−S(b).

C3. Define a k-clique to be a set of k people such that every pair of them are

acquainted with each other. At a certain party, every pair of 3-cliques has at least

one person in common, and there are no 5-cliques. Prove that there are two or fewer

people at the party whose departure leaves no 3-clique remaining.

C4. A set of three nonnegative integers {x, y, z} with x < y < z is called historic if

{z − y, y − x} = {1776, 2001}. Show that the set of all nonnegative integers can be

written as the union of pairwise disjoint historic sets.

C5. Find all finite sequences (x0, x1, . . . , xn) such that for every j, 0 ≤ j ≤ n, xj

equals the number of times j appears in the sequence.
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C6. For a positive integer n define a sequence of zeros and ones to be balanced if it

contains n zeros and n ones. Two balanced sequences a and b are neighbors if you

can move one of the 2n symbols of a to another position to form b. For instance,

when n = 4, the balanced sequences 01101001 and 00110101 are neighbors because

the third (or fourth) zero in the first sequence can be moved to the first or second

position to form the second sequence. Prove that there is a set S of at most 1
n+1

(
2n
n

)

balanced sequences such that every balanced sequence is equal to or is a neighbor of

at least one sequence in S.

C7. A pile of n pebbles is placed in a vertical column. This configuration is modified

according to the following rules. A pebble can be moved if it is at the top of a column

which contains at least two more pebbles than the column immediately to its right.

(If there are no pebbles to the right, think of this as a column with 0 pebbles.) At

each stage, choose a pebble from among those that can be moved (if there are any)

and place it at the top of the column to its right. If no pebbles can be moved, the

configuration is called a final configuration. For each n, show that, no matter what

choices are made at each stage, the final configuration obtained is unique. Describe

that configuration in terms of n.

Alternative Version. A pile of 2001 pebbles is placed in a vertical column. This

configuration is modified according to the following rules. A pebble can be moved if

it is at the top of a column which contains at least two more pebbles than the column

immediately to its right. (If there are no pebbles to the right, think of this as a column

with 0 pebbles.) At each stage, choose a pebble from among those that can be moved

(if there are any) and place it at the top of the column to its right. If no pebbles can

be moved, the configuration is called a final configuration. Show that, no matter what

choices are made at each stage, the final configuration obtained is unique. Describe

that configuration as follows: Determine the number, c, of nonempty columns, and for

each i = 1, 2, . . . , c, determine the number of pebbles pi in column i, where column 1



1.2. COMBINATORICS 5

is the leftmost column, column 2 the next to the right, and so on.

C8. Twenty-one girls and twenty-one boys took part in a mathematical competition.

It turned out that

(a) each contestant solved at most six problems, and

(b) for each pair of a girl and a boy, there was at least one problem that was solved

by both the girl and the boy.

Show that there is a problem that was solved by at least three girls and at least three

boys.
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1.3 Geometry

G1. Let A1 be the center of the square inscribed in acute triangle ABC with two

vertices of the square on side BC. Thus one of the two remaining vertices of the

square is on side AB and the other is on AC. Points B1, C1 are defined in a similar

way for inscribed squares with two vertices on sides AC and AB, respectively. Prove

that lines AA1, BB1, CC1 are concurrent.

G2. In acute triangle ABC with circumcenter O and altitude AP , ∠C ≥ ∠B + 30◦.

Prove that ∠A + ∠COP < 90◦.

G3. Let ABC be a triangle with centroid G. Determine, with proof, the position of

the point P in the plane of ABC such that AP ·AG+BP ·BG+CP ·CG is a minimum,

and express this minimum value in terms of the side lengths of ABC.

G4. Let M be a point in the interior of triangle ABC. Let A′ lie on BC with MA′

perpendicular to BC. Define B′ on CA and C ′ on AB similarly. Define

p(M) =
MA′ ·MB′ ·MC ′

MA ·MB ·MC
.

Determine, with proof, the location of M such that p(M) is maximal. Let µ(ABC)

denote this maximum value. For which triangles ABC is the value of µ(ABC) max-

imal?
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G5. Let ABC be an acute triangle. Let DAC, EAB, and FBC be isosceles triangles

exterior to ABC, with DA = DC, EA = EB, and FB = FC, such that

∠ADC = 2∠BAC, ∠BEA = 2∠ABC, ∠CFB = 2∠ACB.

Let D′ be the intersection of lines DB and EF , let E ′ be the intersection of EC and

DF , and let F ′ be the intersection of FA and DE. Find, with proof, the value of the

sum
DB

DD′ +
EC

EE ′ +
FA

FF ′ .

G6. Let ABC be a triangle and P an exterior point in the plane of the triangle.

Suppose AP, BP,CP meet the sides BC,CA, AB (or extensions thereof) in D, E, F ,

respectively. Suppose further that the areas of triangles PBD, PCE, PAF are all

equal. Prove that each of these areas is equal to the area of triangle ABC itself.

G7. Let O be an interior point of acute triangle ABC. Let A1 lie on BC with OA1

perpendicular to BC. Define B1 on CA and C1 on AB similarly. Prove that O is the

circumcenter of ABC if and only if the perimeter of A1B1C1 is not less than any one

of the perimeters of AB1C1, BC1A1, and CA1B1.

G8. Let ABC be a triangle with ∠BAC = 60◦. Let AP bisect ∠BAC and let BQ

bisect ∠ABC, with P on BC and Q on AC. If AB + BP = AQ + QB, what are the

angles of the triangle?



8 CHAPTER 1. PROBLEMS

1.4 Number Theory

N1. Prove that there is no positive integer n such that, for k = 1, 2, . . . , 9, the

leftmost digit (in decimal notation) of (n + k)! equals k.

N2. Consider the system

x + y = z + u

2xy = zu.

Find the greatest value of the real constant m such that m ≤ x/y for any positive

integer solution (x, y, z, u) of the system, with x ≥ y.

N3. Let a1 = 1111, a2 = 1212, a3 = 1313, and

an = |an−1 − an−2|+ |an−2 − an−3|, n ≥ 4.

Determine a1414 .

N4. Let p ≥ 5 be a prime number. Prove that there exists an integer a with

1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a + 1)p−1 − 1 is divisible by p2.

N5. Let a > b > c > d be positive integers and suppose

ac + bd = (b + d + a− c)(b + d− a + c).

Prove that ab + cd is not prime.

N6. Is it possible to find 100 positive integers not exceeding 25,000, such that all

pairwise sums of them are different?



Chapter 2

Algebra

Problem A1. Let T denote the set of all ordered triples (p, q, r) of nonnegative

integers. Find all functions f : T → R such that

f(p, q, r) =





0 if pqr = 0,

1 + 1
6
{f(p + 1, q − 1, r) + f(p− 1, q + 1, r)

+f(p− 1, q, r + 1) + f(p + 1, q, r − 1)

+f(p, q + 1, r − 1) + f(p, q − 1, r + 1)} otherwise.

Solution. First, we will show that there is at most one function which satisfies the

given conditions. Suppose that f1 and f2 are two such functions. Define h = f1 − f2.

Then h : T → R satisfies

h(p, q, r) =





0 if pqr = 0,

1
6
{h(p + 1, q − 1, r) + h(p− 1, q + 1, r)

+h(p− 1, q, r + 1) + h(p + 1, q, r − 1)

+h(p, q + 1, r − 1) + h(p, q − 1, r + 1)} otherwise.

Observe that the second condition states that h(p, q, r) is equal to the average of the

values of h at the six points (p + 1, q − 1, r), etc., which are the vertices of a regular

hexagon with center at (p, q, r) lying in the plane x + y + z = p + q + r. It suffices to

show that h = 0 for all points in T . Let n be a positive integer. Consider the subset H

9
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of the plane x+y+z = n that lies in the “nonnegative” octant {(x, y, z) : x, y, z ≥ 0}.
Suppose h attains its maximum on H ∩ T at (p, q, r). If pqr = 0 then the maximum

value for h on H ∩ T is 0. If pqr 6= 0, the averaging property of h implies that the

values of h on the six points (p + 1, q − 1, r), etc. are all equal to h(p, q, r). (The six

points are all in H). In particular, h also attains its maximum at (p + 1, q − 1, r).

Repeating the argument (if necessary) using (p + 1, q − 1, r) as the center point,we

see that

h(p, q, r) = h(p + 1, q − 1, r) = h(p + 2, q − 2, r).

Continuing this process, we conclude that h(p, q, r) = h(p + q, 0, r) = 0. Thus the

maximum value of h on H ∩ T is 0. By applying the same argument to the function

−h = f2− f1, we see that the minimum value attained by h on H ∩T is also 0. Thus

h = 0 for all points in H ∩ T . Varying n, we conclude that h = 0 on all points in T .

We will complete the solution by noting that f : T → R defined by

f(p, q, r) =





0 if pqr = 0,

3pqr

p + q + r
otherwise

satisfies both conditions of the problem, and is the unique solution.

Remark 1. One can guess the solution function in the following way: For any function

f defined on T , define the function A[f ] by

A[f ](p, q, r) =
1

6
(f(p + 1, q − 1, r) + · · · ) .

It is easy to check that if c is a constant, then

A[cf ] = cA[f ] and A[c + f ] = c + A[f ].

Also note that if h is defined by h(p, q, r) = f(p, q, r)/(p + q + r), then

A[h](p, q, r) =
A[f ](p, q, r)

p + q + r
.
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We need to find a function f that satisfies the boundary conditions, as well as the

second condition

f = A[f ] + 1.

It is natural to start by considering g(p, q, r) = pqr, which satisfies the boundary

conditions. We shall suitably modify this so that the second condition is also satisfied.

Observe that

A[g](p, q, r) =
1

6
(6pqr − 2(p + q + r)) = g(p, q, r)− p + q + r

3
.

Thus there is an extra term involving p + q + r. To take care of this, we divide pqr

by p + q + r and consider the function u(p, q, r) = pqr/(p + q + r). We have

A[u](p, q, r) =
A[g](p, q, r)

p + q + r
= u(p, q, r)− 1

3
.

Thus

A[3u] = 3u− 1,

and hence 3pqr/(p + q + r) satisfies the second condition.

Remark 2. One can consider the two-dimensional version of this problem, where

f(p, q) = 0 if pq = 0 and f(p, q) = 1 + [f(p + 1, q − 1) + f(p− 1, q + 1)]/2 otherwise.

The unique solution is f(p, q) = pq.



12 CHAPTER 2. ALGEBRA

Problem A2. Let a0, a1, a2, . . . be an arbitrary infinite sequence of positive numbers.

Show that the inequality 1 + an > an−1
n
√

2 holds for infinitely many positive integers

n.

Solution 1. Let c0, c1, c2, c3, . . . be the sequence defined by c0 = 1 and

cn =

(
an−1

1 + an

)
cn−1, n ≥ 1.

Rewriting this as cn = an−1cn−1 − ancn, we obtain the telescoping sum

c1 + c2 + · · ·+ cn = a0 − ancn. (∗)

The assertion of the problem is equivalent to: cn/cn−1 < 2−1/n for infinitely many n.

Assume to the contrary that there exists N such that the opposite inequality holds

for all n ≥ N . Then for n > N ,

cn ≥ cN ·2−( 1
N+1

+ 1
N+2

+···+ 1
n

) = C·2−(1+ 1
2
+···+ 1

n
),

where C = cN ·21+ 1
2
+···+ 1

N is a positive constant. If 2k−1 ≤ n < 2k, then

1 +
1

2
+ · · ·+ 1

n
≤ 1 +

(
1

2
+

1

3

)
+

(
1

4
+ · · ·+ 1

7

)
+ · · ·+

(
1

2k−1
+ · · ·+ 1

2k − 1

)

≤ 1 + 1 + 1 + · · ·+ 1

= k,

so that

cn ≥ C · 2−k for 2k−1 ≤ n < 2k.

Let r be such that 2r−1 ≤ N < 2r, and let m > r. Then

c2r + c2r+1 + · · ·+ c2m−1 = (c2r + · · ·+ c2r+1−1) + (c2r+1 + · · ·+ c2r+2−1)

+ · · ·+ (c2m−1 + · · ·+ c2m−1)

≥ C · (2r · 2−r−1 + 2r+1 · 2−r−2 + · · ·+ 2m−1 · 2−m)

=
C · (m− r)

2
,
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showing that the sum of the cn can be made arbitrarily large. However, by (∗), this

sum can never exceed a0. This contradiction shows that cn/cn−1 < 2−1/n for infinitely

many n, as desired.

Solution 2. Arguing by contradiction, suppose there is N such that 1+an ≤ an−12
1/n

for n ≥ N . Multiply both sides by

bn = 2−(1+ 1
2
+···+ 1

n
)

to get

bn + An ≤ An−1,

where An = bnan.

Thus we have

bN ≤ AN−1 − AN

bN+1 ≤ AN − AN+1

...
...

...

bn ≤ An−1 − An,

and thus
n∑

j=N

bj ≤ AN−1 − An ≤ AN−1,

since the aj are positive.

We shall show, however, that ∑
n≥N

bn

diverges. To see this, note that because 1/x is monotone decreasing, a simple com-

parison of areas yields

1

2
+

1

3
+ · · ·+ 1

n
<

∫ n

1

dx

x
= log n,
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for any positive integer n. Hence

1 +
1

2
+

1

3
+ · · ·+ 1

n
< 1 + log n,

and

bn > 2−1−log n =
1

2
n− log 2 >

1

2n
.

Because the harmonic series diverges (which can be proven by comparing areas as

above, or with more elementary and well-known arguments),
∑

n≥N bn diverges as

well.
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Problem A3. Let x1, x2, . . . , xn be arbitrary real numbers. Prove the inequality

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · ·+ xn

1 + x2
1 + · · ·+ x2

n

<
√

n.

Solution 1. By the Cauchy-Schwarz inequality,

a1 + a2 + · · ·+ an ≤
√

n
√

a2
1 + a2

2 + · · ·+ a2
n

for any real numbers a1, a2, . . . , an. Taking ak = xk/(1 + x2
1 + · · · + x2

k) for k =

1, 2, · · · , n, it suffices to prove that

(
x1

1 + x2
1

)2

+

(
x2

1 + x2
1 + x2

2

)2

+ · · ·+
(

xn

1 + x2
1 + · · ·+ x2

n

)2

< 1.

Observe that for k ≥ 2,

(
xk

1 + x2
1 + · · ·+ x2

k

)2

=
x2

k

(1 + x2
1 + · · ·+ x2

k)
2

≤ x2
k(

1 + x2
1 + · · ·+ x2

k−1

)
(1 + x2

1 + · · ·+ x2
k)

=
1(

1 + x2
1 + · · ·+ x2

k−1

) − 1

(1 + x2
1 + · · ·+ x2

k)
.

For k = 1, similar reasoning yields the inequality

(
x1

1 + x2
1

)2

≤ 1− 1

1 + x2
1

.

Summing these inequalities, the right-hand side telescopes to yield

n∑

k=1

(
xk

1 + x2
1 + · · ·+ x2

k

)2

≤ 1− 1

1 + x2
1 + · · ·+ x2

n

< 1.

Solution 2. Let

an = sup

(
x1

1 + x2
1

+ · · ·+ xn

1 + x2
1 + · · ·+ x2

n

)
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and

bn(r) = sup

(
x1

r2 + x2
1

+ · · ·+ xn

r2 + x2
1 + · · ·+ x2

n

)
,

where the supremums are taken over all real x1, . . . , xn. Replacing xi by rxi in the

second formula shows that bn(r) = an/r when r > 0. Hence splitting off all but the

first term gives

an = sup
x1

(
x1

1 + x2
1

+
an−1√
1 + x2

1

)
.

The result now follows by induction once one shows a1 = 1/2 < 1 and

x

1 + x2
+

√
n√

1 + x2
<
√

n + 1.

This latter inequality can be proven as follows: Without loss of generality, let x be

positive (the inequality obviously holds for x = 0 and negative x), and let 0 < θ < π/2

such that tan θ = x. Also choose 0 < α < π/2 such that tan α =
√

n. Then

x

1 + x2
+

√
n√

1 + x2
= sin θ cos θ +

√
n cos θ

< sin θ +
√

n cos θ

=
√

n + 1

(
1√

n + 1
sin θ +

√
n√

n + 1
cos θ

)

=
√

n + 1 (cos α sin θ + sin α cos θ)

=
√

n + 1 sin(θ + α)

≤ √
n + 1.
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Problem A4. Find all functions f : R→ R, satisfying

f(xy)(f(x)− f(y)) = (x− y)f(x)f(y)

for all x, y.

Solution. We wish to find all real-valued functions with real domain satisfying

f(xy)(f(x)− f(y)) = (x− y)f(x)f(y) (1)

for all real x, y. Substituting y = 1 into (1) yields

f(x)2 = xf(x)f(1). (2)

If f(1) = 0, then f(x) = 0 for all x. This satisfies (1), yielding one solution. Suppose

then, that f(1) = C 6= 0. Equation (2) implies that f(0) = 0. Now let G be a set of

points x for which f(x) 6= 0. By (2),

f(x) = xf(1) for all x ∈ G.

Hence (1) can be satisfied only by functions satisfying

f(x) =

{
Cx if x ∈ G,

0 if x 6∈ G.
(3)

We must determine the structure of G so that the function defined by (3) satisfies (1)

for all real x, y. It is easy to check that if x 6= y and both x and y are elements of G,

then the function defined by (3) satisfies (1) if and only if xy ∈ G. If neither x nor y

are elements of G then (1) is satisfied. By symmetry, the only other case to look at

is x ∈ G, y 6∈ G. In this case, (1) implies that

f(xy)f(x) = 0,

which in turn implies that f(xy) = 0. Thus:

If x ∈ G, y 6∈ G, then xy 6∈ G. (4)
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This implies the following facts about G:

(a) If x ∈ G, then 1/x ∈ G. This is true, for otherwise (4) forces 1 6∈ G, which is

impossible (recall that we are assuming that f(1) 6= 0, so 1 ∈ G).

(b) If x, y ∈ G, then xy ∈ G. By (a) above, 1/x ∈ G, so if xy 6∈ G, then (4) implies

that y = (xy)(1/x) 6∈ G, a contradiction.

(c) If x, y ∈ G, then x/y ∈ G. This follows easily from (a) and (b).

Consequently, G is a set that contains 1, does not contain 0, and is closed under

multiplication and division. It is easy to check that any such set will satisfy (a)

above (since 1 ∈ G) and (4): If G is closed under multiplication and division and

x ∈ G, y 6∈ G, then xy 6∈ G, for otherwise, y = (xy)/x ∈ G, a contradiction.

Therefore, closure under multiplication and division completely characterizes G,

and we can finally write the full answer to the problem:

f(x) =

{
Cx if x ∈ G,

0 if x 6∈ G,

where C is an arbitrary fixed real number, and G is any subset of R that is closed

under multiplication and division (i.e., any subgroup of the nonzero real numbers

under multiplication). Note that C = 0 yields the “trivial” solution derived earlier.
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Problem A5. Find all positive integers a1, a2, . . . , an such that

99

100
=

a0

a1

+
a1

a2

+ · · ·+ an−1

an

,

where a0 = 1 and (ak+1 − 1)ak−1 ≥ a2
k(ak − 1) for k = 1, 2, . . . , n− 1.

Solution. Let a1, a2, . . . , an be positive integers satisfying the conditions of the prob-

lem. Then ak > ak−1, and hence ak ≥ 2 for k = 1, 2, . . . , n − 1. The inequality

(ak+1 − 1)ak−1 ≥ a2
k(ak − 1) can be written in the form

ak−1

ak

+
ak

ak+1 − 1
≤ ak−1

ak − 1
.

Summing these inequalities for k = i + 1, i + 2, . . . , n− 1, together with the obvious

inequality an−1/an < an−1/(an − 1), we obtain

ai

ai+1

+
ai+1

ai+2

+ · · ·+ an−1

an

<
ai

ai+1 − 1
. (∗)

We now determine a1, a2, . . . , an. Using the sum given in the problem statement and

(∗), with i = 0, we obtain
1

a1

≤ 99

100
<

1

a1 − 1
,

so a1 = 2. Using a similar approach with i = 1 we find

1

a2

≤ 1

a1

(
99

100
− 1

a1

)
<

1

a2 − 1
,

and it follows that a2 = 5. Repeating this argument with i = 2 and then i = 3 we

obtain
1

a3

≤ 1

a2

(
99

100
− 1

a1

− a1

a2

)
<

1

a3 − 1
,

from which a3 = 56, and

1

a4

≤ 1

a3

(
99

100
− 1

a1

− a1

a2

− a2

a3

)
<

1

a4 − 1
,
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which implies that a4 = 25·562 = 78400. Continuing with the argument to determine

a5 we find
1

a5

≤ 1

a4

(
99

100
− 1

2
− 2

5
− 5

56
− 56

25·562

)
= 0,

which is impossible. It is easy to verify that the positive integers a1 = 2, a2 = 5,

a3 = 56, a4 = 25·562 satisfy the conditions of the problem. The preceding argument

shows that the solution is unique.
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Problem A6. Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Solution. First we shall prove that

a√
a2 + 8bc

≥ a
4
3

a
4
3 + b

4
3 + c

4
3

,

or equivalently, that (
a

4
3 + b

4
3 + c

4
3

)2

≥ a
2
3 (a2 + 8bc).

The AM-GM inequality yields

(
a

4
3 + b

4
3 + c

4
3

)2

−
(
a

4
3

)2

=
(
b

4
3 + c

4
3

)(
a

4
3 + a

4
3 + b

4
3 + c

4
3

)

≥ 2b
2
3 c

2
3 · 4a 2

3 b
1
3 c

1
3

= 8a
2
3 bc.

Thus

(
a

4
3 + b

4
3 + c

4
3

)2

≥
(
a

4
3

)2

+ 8a
2
3 bc

= a
2
3 (a2 + 8bc),

so
a√

a2 + 8bc
≥ a

4
3

a
4
3 + b

4
3 + c

4
3

.

Similarly, we have

b√
b2 + 8ca

≥ b
4
3

a
4
3 + b

4
3 + c

4
3

and

c√
c2 + 8ab

≥ c
4
3

a
4
3 + b

4
3 + c

4
3

.
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Adding these three inequalities yields

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

Comment. The proposer conjectures that for any a, b, c > 0 and λ ≥ 0, the following

inequality holds:

a√
a2 + λbc

+
b√

b2 + λca
+

c√
c2 + λab

≥ 3√
1 + λ

.



Chapter 3

Combinatorics

Problem C1. Let A = (a1, a2, . . . , a2001) be a sequence of positive integers. Let m

be the number of 3-element subsequences (ai, aj, ak) with 1 ≤ i < j < k ≤ 2001, such

that aj = ai + 1 and ak = aj + 1. Considering all such sequences A, find the greatest

value of m.

Solution. Consider the following two operations on the sequence A:

(1) If ai > ai+1, transpose these terms to obtain the new sequence

(a1, a2, . . . , ai+1, ai, . . . , a2001).

(2) If ai+1 = ai + 1 + d, where d > 0, increase a1, . . . , ai by d to

obtain the new sequence (a1+d, a2+d, . . . , ai+d, ai+1, . . . , a2001).

It is clear that performing operation (1) cannot reduce m. By applying (1) repeatedly,

the sequence can be rearranged to be nondecreasing. Thus we may assume that

our sequence for which m is maximal is nondecreasing. Next, note that if A is

nondecreasing, then performing operation (2) cannot reduce the value of m. It follows

that any A with maximum m is of the form

( a, . . . , a︸ ︷︷ ︸
t1

, a+1, . . . , a+1︸ ︷︷ ︸
t2

, . . . , a+s−1, . . . , a+s−1︸ ︷︷ ︸
ts

)

23
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where t1, . . . , ts are the number of terms in each subsequence, and s ≥ 3. For such a

sequence A,

m = t1t2t3 + t2t3t4 + · · ·+ ts−2ts−1ts. (∗)
It remains to find the best choice of s and the best partition of 2001 into positive

integers t1, . . . , ts.

The maximum value of m occurs when s = 3 or s = 4. If s > 4 then we may

increase the value given by (∗) by using a partition of 2001 into s− 1 parts, namely

t2, t3, (t1 + t4), . . . , ts.

Note that when s = 4 this modification does not change the value given by (∗).
Hence the maximum value m can be obtained with s = 3. In this case, m = t1t2t3 is

largest when t1 = t2 = t3 = 2001/3 = 667. Thus the maximum value of m is 6673.

This maximum value is attained when s = 4 as well, in this case for sequences with

t1 = a, t2 = t3 = 667, and t4 = 667− a, where 1 ≤ a ≤ 666.
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Problem C2. Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers.

For each permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =
∑n

i=1 ciai.

Prove that there exist permutations a 6= b of {1, 2, . . . , n} such that n! is a divisor of

S(a)− S(b).

Solution. Let
∑

S(a) be the sum of S(a) over all n! permutations a = (a1, a2, . . . , an).

We compute
∑

S(a) mod n! two ways, one of which depends on the desired con-

clusion being false, and reach a contradiction when n is odd.

First way. In
∑

S(a), c1 is multiplied by each k ∈ {1, . . . , n} a total of (n−1)!

times, once for each permutation of {1, . . . , n} in which a1 = k. Thus the coefficient

of c1 in
∑

S(a) is

(n−1)!(1 + 2 + · · ·+ n) = (n+1)!/2.

The same is true for all ci, so

∑
S(a) =

(n+1)!

2

n∑
i=1

ci. (1)

Second way. If n! is not a divisor of S(a)−S(b) for any a 6= b, then each S(a) must

have a different remainder mod n!. Since there are n! permutations, these remainders

must be precisely the numbers 0, 1, 2, . . . , n!−1. Thus

∑
S(a) ≡ (n!− 1)n!

2
mod n!. (2)

Combining (1) and (2), we get

(n+1)!

2

n∑
i=1

ci ≡ (n!− 1)n!

2
mod n!. (3)

Now, for n odd, the left side of (3) is congruent to 0 modulo n!, while for n > 1

the right side is not congruent to 0 (n! − 1 is odd). For n > 1 and odd, we have a

contradiction.
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Problem C3. Define a k-clique to be a set of k people such that every pair of them

are acquainted with each other. At a certain party, every pair of 3-cliques has at least

one person in common, and there are no 5-cliques. Prove that there are two or fewer

people at the party whose departure leaves no 3-clique remaining.

Solution. It is convenient to use the language of graph theory. Each person at

the party is represented by a vertex, and there is an edge joining two vertices if the

corresponding persons are acquainted. An m-clique then corresponds to a set of m

vertices with each pair of vertices joined by an edge. In other words, the existence of

such a clique means the given graph contains the complete graph Km as a subgraph.

In particular, a 3-clique corresponds to a triangle (K3). We wish to prove that in any

graph G in which any two triangles have at least one vertex in common and there is

no K5, there exist two or fewer vertices whose removal eliminates all triangles.

Let G be such a graph. The result is trivially true in case G has at most one

triangle. Thus we have either (a) or (b) as shown below.

(a) (b)

p

q

r

s

t

x y

u

v

Suppose (a) occurs, and let T1 = {p, q, r} and T2 = {r, s, t}. If the deletion of r

destroys all triangles, we are done. Otherwise there is a third triangle T3 that is not

destroyed by the removal of r, and this triangle must share a vertex with each of T1

and T2. It is plain that any such triangle leads to an occurrence of (b) with x = r and

u ∈ T1, v ∈ T2. Thus we are left to consider case (b). Suppose (b) occurs, and now let

T1 = {u, v, x} and T2 = {u, v, y}. If the deletion of u and v destroys all triangles, we

are done. Otherwise, for some z 6∈ {u, v, x, y} there must be a triangle T3 = {x, y, z}.
In particular, xy is an edge. Now G contains the following subgraph.
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v

x y

u

z

(c)

We claim that the deletion of x and y destroys all triangles. Suppose not. Then there

is a triangle T that is disjoint from {x, y}. Since T shares a vertex with {x, y, z},
T contains z. Similarly, T contains u since it shares a vertex with {x, y, u} and T

contains v since it shares a vertex with {x, y, v}. Thus T = {z, u, v}, but this is

impossible since G contains no K5. Hence there are always two or fewer vertices

whose removal destroys all triangles.
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Problem C4. A set of three nonnegative integers {x, y, z} with x < y < z is called

historic if {z−y, y−x} = {1776, 2001}. Show that the set of all nonnegative integers

can be written as the union of pairwise disjoint historic sets.

Solution. For convenience let a = 1776 and b = 2001. All that we will really use

about a and b is that 0 < a < b. Define

A = {0, a, a+b}
B = {0, b, a+b}.

Note that both A and B are historic, and that a set X is historic if and only if

X = x+A or X = x+B for some nonnegative integer x, where x+S = {x+s|s ∈ S}.
We will show how to construct an infinite sequence X0, X1, X2, . . . of disjoint

historic sets with the property that if k is the smallest nonnegative integer not included

among X0 through Xm, then k belongs to Xm+1. Thus the union of this infinite

sequence includes every nonnegative integer.

Take X0 = A. Assuming that we have constructed X0 through Xm, let k be the

least element not occurring in their union, U . Then take Xm+1 = k + A if k + a /∈ U

and k + B otherwise. That is, always take k + A first, if possible.

Why does this construction never fail? Suppose that we had carried it out to

some point m, and then failed. Note that the smallest elements of X0 through Xm

are all less than k (since at each stage we added a set whose smallest element was the

first missing from the union of the earlier ones). Therefore the element k + a + b is

not in U . So the failure must be due to the fact that k + b is covered by U . How was

k + b covered? For some j ≤ m, it must have been the largest element of Xj. Let l

denote the least element in Xj. Then k + b = l + a + b, so k = l + a. Since k is not

covered, Xj = l + B. But by the algorithm, we cannot choose Xj = l + B when l + a

is not covered, a contradiction. This contradiction shows that the construction can

never fail.
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Problem C5. Find all finite sequences (x0, x1, . . . , xn) such that for every j, 0 ≤ j ≤
n, xj equals the number of times j appears in the sequence.

Solution. Let (x0, x1, . . . , xn) be any such sequence. Since each xj is the number

of times j appears, the terms of the sequence are nonnegative integers. Note that

x0 > 0 since x0 = 0 is a contradiction. Let m denote the number of positive terms

among x1, x2, . . . , xn. Since x0 = p ≥ 1 implies xp ≥ 1, we see that m ≥ 1. Observe

that
∑n

i=1 xi = m + 1 since the sum on the left counts the total number of positive

terms of the sequence, and x0 > 0. (Note. For every j > 0 that appears as some xi,

the sequence is long enough to include a term xj to count it, because the sequence

contains j values of i and at least one other value, the value j itself if i 6= j and the

value 0 if i = j.) Since the sum has exactly m positive terms, m−1 of its terms equal

1, one term equals 2, and the remainder are 0. Therefore only x0 can exceed 2, so

for j > 2 the possibility that xj > 0 arises only in case j = x0. In particular, m ≤ 3.

Hence there are three cases to consider. In each case, bear in mind that m− 1 of the

terms x1, x2, . . . , xn equal 1, one term equals 2, and the the others are 0.

Case (i): m = 1. We have x2 = 2 since x1 = 2 is impossible. Thus x0 = 2 and

the final sequence is (2, 0, 2, 0).

Case (ii): m = 2. Either x1 = 2 or x2 = 2. The first possibility leads to (1, 2, 1, 0)

and the second one gives (2, 1, 2, 0, 0).

Case (iii): m = 3. In this case, xp > 0 for some p ≥ 3. By the last sentence

before Case (i), x0 = p and xp = 1. Then x1 = 1 is contradictory, so x1 = 2, x2 = 1,

and we have accounted for all of the positive terms of the sequence. The resulting

sequence is (p, 2, 1, 0, . . . , 0︸ ︷︷ ︸
p−3

, 1, 0, 0, 0).

In summary, there are three special solutions and one infinite family:

(2, 0, 2, 0), (1, 2, 1, 0), (2, 1, 2, 0, 0), (p, 2, 1, 0, . . . , 0︸ ︷︷ ︸
p−3

, 1, 0, 0, 0), p ≥ 3.

Note. If one considers the null set to be a sequence, then it too is a solution.
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Comment. An expanded version of the problem allows for infinite sequences, and such

solutions exist. One simple construction starts with a finite solution (x0, x1, . . . , xn),

sets xn+1 = n + 1 and continues as shown:

(x0, x1, . . . , xn, n + 1, n + 1, . . . , n + 1︸ ︷︷ ︸
xn+1=n+1 terms

, n + 2, n + 2, . . . , n + 2︸ ︷︷ ︸
xn+2 terms

, . . . ).

For example, (1, 2, 1, 0, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, . . .).
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Problem C6. For a positive integer n define a sequence of zeros and ones to be

balanced if it contains n zeros and n ones. Two balanced sequences a and b are

neighbors if you can move one of the 2n symbols of a to another position to form

b. For instance, when n = 4, the balanced sequences 01101001 and 00110101 are

neighbors because the third (or fourth) zero in the first sequence can be moved to

the first or second position to form the second sequence. Prove that there is a set S

of at most 1
n+1

(
2n
n

)
balanced sequences such that every balanced sequence is equal to

or is a neighbor of at least one sequence in S.

Solution. For each balanced sequence a = (a1, a2, . . . , a2n) let f(a) be the sum of the

positions of the 1’s in a. For example, f(01101001) = 2+3+5+8 = 18. Partition the(
2n
n

)
balanced sequences into n + 1 classes according to the residue of f (mod n + 1),

and let S be a class of minimum size. Then |S| ≤ 1
n+1

(
2n
n

)
, and we claim that every

balanced sequence is either a member of S or is a neighbor of at least one member of

S. Let a = (a1, a2, . . . , a2n) be a given balanced sequence. We consider two cases.

Case (i): a1 = 1. The balanced sequence b = (b1, b2, . . . , b2n) obtained from a by

moving the leftmost 1 just to the right of the kth 0 satisfies f(b) = f(a)+k. (If am+1

is the kth 0 of a, then in going from a to b, the leftmost 1 is moved up m places and

m− k 1’s are moved back one place each.) Thus we find n neighbors of a so that the

values of f for a and these neighbors fill an interval of n + 1 consecutive integers. In

particular, one of these n + 1 balanced sequences belongs to S.

Case (ii): a1 = 0. This case is similar. Movement of the initial 0 just to the right

of the kth 1 yields a neighbor b satisfying f(b) = f(a)− k.

Hence every balanced sequence is either equal to or is a neighbor of at least one

member of S.
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Problem C7. A pile of n pebbles is placed in a vertical column. This configuration

is modified according to the following rules. A pebble can be moved if it is at the top

of a column which contains at least two more pebbles than the column immediately

to its right. (If there are no pebbles to the right, think of this as a column with 0

pebbles.) At each stage, choose a pebble from among those that can be moved (if

there are any) and place it at the top of the column to its right. If no pebbles can

be moved, the configuration is called a final configuration. For each n, show that,

no matter what choices are made at each stage, the final configuration obtained is

unique. Describe that configuration in terms of n.

Alternative Version. A pile of 2001 pebbles is placed in a vertical column. This

configuration is modified according to the following rules. A pebble can be moved if

it is at the top of a column which contains at least two more pebbles than the column

immediately to its right. (If there are no pebbles to the right, think of this as a column

with 0 pebbles.) At each stage, choose a pebble from among those that can be moved

(if there are any) and place it at the top of the column to its right. If no pebbles can

be moved, the configuration is called a final configuration. Show that, no matter what

choices are made at each stage, the final configuration obtained is unique. Describe

that configuration as follows: Determine the number, c, of nonempty columns, and for

each i = 1, 2, . . . , c, determine the number of pebbles pi in column i, where column 1

is the leftmost column, column 2 the next to the right, and so on.

Solution 1 of the First Version. At any stage, let pi be the number of pebbles

in column i for i = 1, 2, . . ., where column 1 denotes the leftmost column. We will

show that in the final configuration, for all i for which pi > 0 we have pi = pi+1 + 1,

except that for at most one i∗, pi∗ = pi∗+1. Therefore, the configuration looks like

the figure shown below, where there are c nonempty columns and there are from 1 to

c pebbles in the last diagonal row of the triangular configuration. In particular, let

tk = 1 + 2 + · · ·+ k = k(k+1)/2 be the kth triangular number. Then c is the unique

integer for which tc−1 < n ≤ tc. Let s = n − tc−1. Then there are s pebbles in the
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rightmost diagonal, and so the two columns with the same height are columns c− s

and c−s+1 (except if s = c, in which case no nonempty columns have equal height).

Final Configuration for n = 12

Another way to say this is

pi =

{
c− i if i ≤ c− s,

c− i + 1 if i > c− s.
(1)

To prove this claim, we show that

(a) At any stage of the process, p1 ≥ p2 ≥ · · ·

(b) At any stage, it is not possible for there to be i < j for which pi = pi+1,

pj = pj+1 > 0, and pi+1 − pj ≤ j − i − 1 (that is, the average decrease per

column from column i + 1 to column j is 1 or less).

(c) At any final configuration, pi − pi+1 = 0 or 1, with at most one i for which

pi > 0 and pi − pi+1 = 0.

In the proofs of (a)-(c), we use the following terminology. Let a k-switch be the

movement of one pebble from column k to column k + 1, and for any column i let a

drop be the quantity pi − pi+1.
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To prove (a), suppose a sequence of valid moves resulted in pi < pi+1 for the

first time at some stage j. Then the move leading to this stage must have been an

i-switch, but it would be contrary to the condition that column i have at least 2 more

pebbles than column i+1, to allow switches.

To prove (b), if such a configuration were obtainable, there would be a minimum

value of j − i over all such obtainable configurations, and we now show that there

is no minimum. Suppose p1, p2, . . . was such a minimal configuration. It cannot be

that j = i+1, for what would columns i, i+1, i+2 look like just before the move that

made the heights equal? The move must have been a k-switch for i− 1 ≤ k ≤ i + 2,

but if so the configuration before the switch was impossible (not decreasing).

Now suppose j > i + 1. Consider the first configuration C in the sequence for

which columns i, i+1, j, j+1 are at their final heights. Note that from pi+1 to pj the

columns decrease by exactly one each time in C, because if there was a drop of 2

or more at some point, there would have to be another drop of 0 in this interval to

obtain an average of 1 or less, and thus j − i is not minimal. The move leading to

C was either an i-switch or a j-switch. If it was the former, at the previous stage

columns i + 1 and i + 2 had the same height, violating the minimality of j − i. A

similar contradiction arises if the move was a j-switch.

Finally, to prove (c), if any drop is 2 or more, the configuration isn’t final. How-

ever, if all drops are 0 or 1, and there were two drops of 0 between nonempty columns

(say between i and i+1 and between j and j+1), then (b) would be violated. Thus

a final configuration that satisfied (b) also satisfies (c).

Solution of the Alternative Version. Same as above, except after display (1)

insert:

Direct calculation shows that 2001 = t63− 15, so there are 63 nonempty columns and

the final configuration is

pi =

{
63− i if i ≤ 15,

64− i if 16 ≤ i ≤ 63.



35

Solution 2 of the First Version. At each stage, let c be the rightmost nonempty

column. In conditions (a)-(c) in the previous solution, replace (b) by (b′), where

(b′) All configurations obtainable from the initial configuration satisfy

pi − pj ≥ j − i− 1 for all i < j ≤ c + 1. (2)

(The restriction to j ≤ c + 1, which causes certain complications, is necessary for (2)

to be true.) Fact (c), and thus the answer, follows as easily from (b′) as from (b). We

prove (b′) by induction as follows.

Condition (2) is immediate for the initial configuration: Since c = 1, the only

case is p1 − p2 = n > 2−1−1. Now suppose some configuration p1, p2 . . . with final

nonempty column cp satisfies (2), and a new configuration q1, q2 . . . is obtained from

it by a k-switch. Thus qk = pk−1, qk+1 = pk+1 +1, and qi = pi for all other i. Let the

new configuration have cq nonempty columns. Note that cq = cp unless k = cp − 1.

For any i < j ≤ cq + 1 we now show that qi − qj ≥ j − i − 1. The only cases to

consider are those where qi − qj < pi − pj, that is, those where i = k or j = k + 1;

and those where pi − pj wasn’t restricted, because j was greater than cp + 1 (case 4

below). There are four such cases.

Case 1. If (i, j) = (k, k+1), then qi − qj ≥ 0 = j − i− 1.

Case 2. If i = k and j > k + 1, apply (2) to (i+1, j) to obtain

qi − qj ≥ qi+1 − qj = pi+1 − pj + 1 ≥ j − (i+1)− 1 + 1 = j − i− 1.

Case 3. If j = k + 1 and i < k, then applying (2) to (i, j−1),

qi − qj ≥ qi − qj−1 = pi − pj−1 + 1 ≥ (j−1)− i− 1 + 1 = j − i− 1.

Case 4. We have j = cp + 2 = k+2, pk+1 = 0 and pk ≥ 2. If i = k or k+1, then

qi − qj = qi ≥ 1 ≥ j−i−1. If i < k, then

qi − qj = pi − 0 ≥ pi − pk + 2 ≥ (i−k−1) + 2 = i−j − 1.

This concludes the inductive step and (b′) is proved.
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Problem C8. Twenty-one girls and twenty-one boys took part in a mathematical

competition. It turned out that

(a) each contestant solved at most six problems, and

(b) for each pair of a girl and a boy, there was at least one problem that was solved

by both the girl and the boy.

Show that there is a problem that was solved by at least three girls and at least three

boys.

Solution 1. We introduce the following symbols: G is the set of girls at the compe-

tition and B is the set of boys, P is the set of problems, P (g) is the set of problems

solved by g ∈ G, and P (b) is the set of problems solved by b ∈ B. Finally, G(p) is

the set of girls that solve p ∈ P and B(p) is the set of boys that solve p. In terms of

this notation, we have that for all g ∈ G and b ∈ B,

(a) |P (g)| ≤ 6, |P (b)| ≤ 6, (b) P (g) ∩ P (b) 6= ∅.

We wish to prove that some p ∈ P satisfies |G(p)| ≥ 3 and |B(p)| ≥ 3. To do

this, we shall assume the contrary and reach a contradiction by counting (two ways)

all ordered triples (p, q, r) such that p ∈ P (g) ∩ P (b). With T = {(p, g, b) : p ∈
P (g) ∩ P (b)}, condition (b) yields

|T | =
∑
g∈G

∑

b∈B

|P (g) ∩ P (b)| ≥ |G| · |B| = 212. (1)

Assume that no p ∈ P satisfies |G(p)| ≥ 3 and |B(p)| ≥ 3. We begin by noting

that ∑
p∈P

|G(p)| =
∑
g∈G

|P (g)| ≤ 6|G| and
∑
p∈P

|B(p)| ≤ 6|B|. (2)

(Note. The equality in (2) is obtained by a standard double-counting technique: Let

χ(g, p) = 1 if g solves p and χ(g, p) = 0 otherwise, and interchange the orders of



37

summation in
∑

p∈P

∑
g∈G χ(g, p).) Let

P+ = {p ∈ P : |G(p)| ≥ 3},
P− = {p ∈ P : |G(p)| ≤ 2}.

Claim.
∑

p∈P− |G(p)| ≥ |G|; thus
∑

p∈P+
|G(p)| ≤ 5|G|. Also

∑
p∈P+

|B(p)| ≥ |B|;
thus

∑
p∈P− |B(b)| ≤ 5|B|.

Proof. Let g ∈ G be arbitrary. By the Pigeonhole Principle, conditions (a) and (b)

imply that g solves some problem p that is solved by at least d21/6e = 4 boys. By

assumption, |B(p)| ≥ 4 implies that p ∈ P−, so every girl solves at least one problem

in P−. Thus ∑
p∈P−

|G(p)| ≥ |G|. (3)

In view of (2) and (3) we have

∑
p∈P+

|G(p)| =
∑
p∈P

|G(p)| −
∑
p∈P−

|G(p)| ≤ 5|G|.

Also, each boy solves a problem that is solved by at least four girls, so each boy solves

a problem p ∈ P+. Thus
∑

p∈P+
|B(p)| ≥ |B|, and the calculation proceeds as before

using (2).

Using the claim just established, we find

|T | =
∑
p∈P

|G(p)| · |B(p)|

=
∑
p∈P+

|G(p)| · |B(p)|+
∑
p∈P−

|G(p)| · |B(p)|

≤ 2
∑
p∈P+

|G(p)|+ 2
∑
p∈P−

|B(p)|

≤ 10|G|+ 10|B| = 20 · 21.

This contradicts (1), so the proof is complete.
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Solution 2. Let us use some of the notation given in the first solution. Suppose

that for every p ∈ P either |G(p)| ≤ 2 or |B(p)| ≤ 2. For each p ∈ P , color p red if

|G(p)| ≤ 2 and otherwise color it black. In this way, if p is red then |G(p)| ≤ 2 and

if p is black then |B(p)| ≤ 2. Consider a chessboard with 21 rows, each representing

one of the girls, and 21 columns, each representing one of the boys. For each g ∈ G

and b ∈ B, color the square corresponding to (g, b) as follows: pick p ∈ P (g) ∩ P (b)

and assign p’s color to that square. (By condition (b), there is always an available

choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least

d441/2e = 221 squares, and thus some row has at least d221/21e = 11 black squares

or some column has at least 11 red squares.

Suppose the row corresponding to g ∈ G has at least 11 black squares. Then

for each of 11 squares, the black problem that was chosen in assigning the color was

solved by at most 2 boys. Thus we account for at least d11/2e = 6 distinct problems

solved by g. In view of condition (a), g solves only these problems. But then at most

12 boys solve a problem also solved by g, in violation of condition (b).

In exactly the same way, a contradiction is reached if we suppose that some

column has at least 11 red squares. Hence some p ∈ P satisfies |G(p)| ≥ 3 and

|B(p)| ≥ 3.
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Geometry

Problem G1. Let A1 be the center of the square inscribed in acute triangle ABC

with two vertices of the square on side BC. Thus one of the two remaining vertices

of the square is on side AB and the other is on AC. Points B1, C1 are defined in a

similar way for inscribed squares with two vertices on sides AC and AB, respectively.

Prove that lines AA1, BB1, CC1 are concurrent.

Solution. Let α = ∠CAB, β = ∠ABC, and γ = ∠BCA be the angles of triangle

ABC. Let the line through A and A1 meet side BC at X. Similarly, let the line

through B and B1 meet side CA at Y , and the line through C and C1 meet side AB

at Z. By the converse of Ceva’s Theorem, it suffices to prove that

BX

XC

CY

Y A

AZ

ZB
= 1.

Consider first BX/XC. Let the square with center A1 have side s, vertices P and Q

on sides AB and AC, respectively, and vertices S and T on BC with S between B

and T . Since AX passes through the center of the square QPST , if it cuts side PQ

of the square into segments of length u and v, then it cuts side ST into segments of

length v and u as shown.

39
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A

B C

QP

XS T

u v

v u

s

We then have

BX

XC
=

u

v
=

BX + u

XC + v
=

BT

SC
=

BS + s

TC + s
=

s cot β + s

s cot γ + s
=

cot β + 1

cot γ + 1
.

Similarly,
CY

Y A
=

cot γ + 1

cot α + 1
and

AZ

ZB
=

cot α + 1

cot β + 1
.

Hence
BX

XC

CY

Y A

AZ

ZB
= 1,

completing the proof.
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Problem G2. In acute triangle ABC with circumcenter O and altitude AP , ∠C ≥
∠B + 30◦. Prove that ∠A + ∠COP < 90◦.

Solution 1. Let α = ∠CAB, β = ∠ABC, γ = ∠BCA, and δ = ∠COP . Let K

and Q be the reflections of A and P , respectively, across the perpendicular bisector of

BC. Let R denote the circumradius of 4ABC. Then OA = OB = OC = OK = R.

Furthermore, we have QP = KA because KQPA is a rectangle. Now note that

∠AOK = ∠AOB − ∠KOB = ∠AOB − ∠AOC = 2γ − 2β ≥ 60◦.

B C

K A

Q PJ

O

It follows from this and from OA = OK = R that KA ≥ R and QP ≥ R. Therefore,

using the Triangle Inequality, we have OP + R = OQ + OC > QC = QP + PC ≥
R + PC. It follows that OP > PC, and hence in 4COP , ∠PCO > δ. Now since

α = 1
2
∠BOC = 1

2
(180◦−2∠PCO) = 90◦−∠PCO, it indeed follows that α+δ < 90◦.

Solution 2. As in the previous solution, it is enough to show that OP > PC. To this

end, recall that by the (Extended) Law of Sines, AB = 2R sin γ and AC = 2R sin β.

Therefore, we have

BP − PC = AB cos β − AC cos γ = 2R(sin γ cos β − sin β cos γ) = 2R sin(γ − β).
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It follows from this and from

30◦ ≤ γ − β < γ < 90◦

that BP−PC ≥ R. Therefore, we obtain that R+OP = BO+OP > BP ≥ R+PC,

from which OP > OC, as desired.

Solution 3. We first show that R2 > CP ·CB. To this end, since CB = 2R sin α

and CP = AC cos γ = 2R sin β cos γ, it suffices to show that 1
4

> sin α sin β cos γ. We

note that 1 > sin α = sin(γ + β) = sin γ cos β + sin β cos γ and 1
2
≤ sin(γ − β) =

sin γ cos β − sin β cos γ since 30◦ ≤ γ − β < 90◦. It follows that 1
4

> sin β cos γ and

that 1
4

> sin α sin β cos γ.

Now we choose a point J on BC so that CJ ·CP = R2. It follows from this and

from R2 > CP · CB that CJ > CB, so that ∠OBC > ∠OJC. Since OC/CJ =

PC/CO and ∠JCO = ∠OCP , we have 4JCO ∼= 4OCP and ∠OJC = ∠POC = δ.

It follows that δ < ∠OBC = 90◦ − α or α + δ < 90◦.

Solution 4. On the one hand, as in the third solution, we have R2 > CP · CB.

On the other hand, the power of P with respect to the circumcircle of 4ABC is

BP · PC = R2 −OP 2. From these two equations we find that

OP 2 = R2 −BP · PC > PC·CB −BP ·PC = PC2,

from which OP > PC. Therefore, as in the first solution, we conclude that α + δ <

90◦.
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Problem G3. Let ABC be a triangle with centroid G. Determine, with proof, the

position of the point P in the plane of ABC such that AP ·AG + BP ·BG + CP ·CG

is a minimum, and express this minimum value in terms of the side lengths of ABC.

Solution. As usual, let a, b, c denote the sides of the triangle facing the vertices

A,B, C, respectively. We will show that the desired minimum value of AP · AG +

BP · BG + CP · CG is attained when P is the centroid G, and that the minimum

value is

AG2 + BG2 + CG2 = 1
9
{(2b2 + 2c2 − a2) + (2c2 + 2a2 − b2) + (2c2 + 2a2 − b2)}

=
a2 + b2 + c2

3
.

The latter follows by using Stewart’s Theorem to compute the lengths of the medians

AL, BM , CN , along with the relations AG = 2
3
AL, BG = 2

3
BM , CG = 2

3
CN .

Let S be the circle passing through B, G, and C. The median AL meets S at G

and K. Let θ, φ, χ be the angle measures as shown.

A B

C

M

N

G

K

L

θ

θ

ϕ

ϕ

χ

χ

ϕ

P

S
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By the Law of Sines, we find

BG

CG
=

sin ϕ

sin θ
and

AG

BG
=

sin χ

sin ϕ
.

Also BK = 2R sin θ, CK = 2R sin ϕ, BC = 2R sin χ, where R is the radius of S.

Hence
CG

BK
=

BG

CK
=

AG

BC
. (∗)

Let P be any point in the plane of ABC. By Ptolemy’s Theorem,

PK ·BC ≤ BP · CK + BK · CP,

with equality if and only if P lies on S. In view of (∗), we have

PK · AG ≤ BP ·BG + CG · CP.

Addition of AP · AG to both sides gives

(AP + PK) · AG ≤ AP · AG + BP ·BG + CP · CG.

Since AK ≤ AP + AK by the Triangle Inequality, we have

AK · AG ≤ AP · AG + BP ·BG + CP · CG.

Equality holds if and only if P lies on the segment AK and P lies on S as well. Hence

equality holds if and only if P = G.
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Problem G4. Let M be a point in the interior of triangle ABC. Let A′ lie on BC

with MA′ perpendicular to BC. Define B′ on CA and C ′ on AB similarly. Define

p(M) =
MA′ ·MB′ ·MC ′

MA ·MB ·MC
.

Determine, with proof, the location of M such that p(M) is maximal. Let µ(ABC)

denote this maximum value. For which triangles ABC is the value of µ(ABC) max-

imal?

Solution. Let α, β, γ denote the angles A,B, C respectively. Also let

α1 = ∠MAB, α2 = ∠MAC,

β1 = ∠MBC, β2 = ∠MBA,

γ1 = ∠MCA, γ2 = ∠MCB.

We have

MB′ ·MC ′

(MA)2
= sin α1 sin α2,

MB′ ·MA′

(MC)2
= sin γ1 sin γ2,

MA′ ·MC ′

(MB)2
= sin β1 sin β2,

so that p(M)2 = sin α1 sin α2 sin β1 sin β2 sin γ1 sin γ2. Observe that

sin α1 sin α2 = 1
2
(cos(α1 − α2)− cos(α1 + α2)) ≤ 1

2
(1− cos α) = sin2 α

2
. (1)

Likewise,

sin β1 sin β2 ≤ sin2 β

2
and sin γ1 sin γ2 ≤ sin2 γ

2
. (2)

Therefore

p(M) ≤ sin
α

2
sin

β

2
sin

γ

2
.

Clearly, equality is achieved in (1) and (2) if and only if α1 = α2, β1 = β2, γ1 = γ2; in

other words, p(M) achieves its maximum value when M is the center of the inscribed

circle of triangle ABC and this maximum value is

µ(ABC) = sin
α

2
sin

β

2
sin

γ

2
.
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It is well known that this quantity is maximal when the triangle is equilateral. This

can be proven in many ways; for example, using Jensen’s inequality. A more elemen-

tary proof uses the first equality of (1) to deduce that if x, y ≥ 0 and x + y ≤ π/2 is

fixed, the value of sin x sin y will increase as the difference |x− y| decreases. Thus, if

x + y + z = π/2, the value of sin x sin y sin z can be increased if any of the x, y, z are

not equal to π/6. (For example, if x < π/6 and z > π/6 and x is closer to π/6 than

z is, replace x by x′ = π/6 and z by z′ = z − π/6 + x. The sum x′ + y + z′ remains

unchanged, but the product sin x′ sin y sin z′ increases.)

Comment. The Jury may wish to consider an alternative version of this problem,

which asks only the first of the two questions (i.e., only asks for the location of

M). This would avoid a situation in which some students laboriously prove that

sin x sin y sin z is maximized when x = y = z, while others use Jensen’s inequality,

and still others merely state, as the proposer did, that the result is well known.
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Problem G5. Let ABC be an acute triangle. Let DAC,EAB, and FBC be isosceles

triangles exterior to ABC, with DA = DC,EA = EB, and FB = FC, such that

∠ADC = 2∠BAC, ∠BEA = 2∠ABC, ∠CFB = 2∠ACB.

Let D′ be the intersection of lines DB and EF , let E ′ be the intersection of EC and

DF , and let F ′ be the intersection of FA and DE. Find, with proof, the value of the

sum

DB

DD′ +
EC

EE ′ +
FA

FF ′ .

Solution. Note that ∠ADC, ∠BEA, ∠CFB < π since ABC is an acute triangle.

Also,

∠DAC =
π

2
− 1

2
∠ADC =

π

2
− ∠BAC

and

∠BAE =
π

2
− 1

2
∠BEA =

π

2
− ∠ABC.

Hence

∠DAE = ∠DAC + ∠BAC + ∠BAE = π − ∠ABC < π.

Likewise,

∠EBF < π and ∠FCD < π.

Thus the polygon DAEBFC is convex and

∠ADC + ∠BEA + ∠CFB = 2(∠BAC + ∠ABC + ∠ACB) = 2π.
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A B

C

D

E

F
E ′

D′

F ′

O

Let ω1, ω2, ω3 be circles with centers at D,E, F , respectively, and radii DA,EB, FC,

respectively. Using ∠ADC +∠BEA+∠CFB = 2π, it is easy to see by the Inscribed

Angle Theorem that these three circles are concurrent; let O be the common point.

Then O is the reflection of C with respect to DF . Likewise, O is also the reflection of

A with respect to DE and the reflection of B with respect to EF . Let [XY Z] denote

the area of triangle XY Z. We have

DB

DD′ =
DD′ + D′B

DD′ = 1 +
D′B
DD′ = 1 +

[EBF ]

[DEF ]
= 1 +

[OEF ]

[DEF ]
.

Likewise,
EC

EE ′ = 1 +
[ODF ]

[DEF ]
and

FA

FF ′ = 1 +
[ODE]

[DEF ]
.

Thus
DB

DD′ +
EC

EE ′ +
FA

FF ′ = 3 +
[OEF ] + [ODF ] + [ODE]

[DEF ]
= 4.
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Problem G6. Let ABC be a triangle and P an exterior point in the plane of the

triangle. Suppose AP, BP, CP meet the sides BC,CA, AB (or extensions thereof) in

D,E, F , respectively. Suppose further that the areas of triangles PBD, PCE,PAF

are all equal. Prove that each of these areas is equal to the area of triangle ABC

itself.

Solution 1. Let D, E, and F divide the sides BC,CA, and AB in the signed

ratios z/y, x/z, and y/x, respectively. Since AD, BE, and CF are concurrent (at P ),

by Ceva’s Theorem we may choose the ratios in this manner. Let us assume that

[ABC] = 1, where [UV W ] denotes the signed area of 4UV W . Note that for P to lie

outside the triangle at least one of x, y, z must be positive and at least one must be

negative. Also,
[PBC]

x
=

[PCA]

y
=

[PAB]

z
=

[ABC]

x + y + z
.

Now

[PBD] =
[PBD]

[PBC]

[PBC]

[ABC]
[ABC] =

z

y + z

x

x + y + z
=

zx

(y + z)(x + y + z)
.

Similarly,

[PCE] =
xy

(z + x)(x + y + z)
and [PAF ] =

yz

(x + y)(x + y + z)
.

Since these three areas are equal, we have y(y + z) = z(z + x) = x(x + y). We may

assume at this stage that z = 1. This yields

y(y + 1) = 1 + x = x(x + y).

So x = y2+y−1 from the first equation, and hence we have (y2+y−1)2+(y2+y−1)y =

y2 + y. Simplification gives y4 + 3y3 − y2 − 4y + 1 = 0, which can be factored as

(y − 1)(y3 + 4y2 + 3y − 1) = 0.

If y = 1, then we have x = 1, implying that P coincides with the centroid of

4ABC, contradicting the hypothesis that P lies outside the triangle.
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Therefore,

y3 + 4y2 + 3y − 1 = 0.

Using this fact, it follows that

[PBD] =
zx

(y + z)(x + y + z)
=

x

(1 + y)(x + y + 1)

=
y2 + y − 1

(y + 1)(y2 + 2y)
=

y2 + y − 1

y3 + 3y2 + 2y
=

y2 + y − 1

−y2 − y + 1
= −1,

[PCE] =
xy

(z + x)(x + y + z)
=

xy

(x + 1)(x + y + 1)

=
(y2 + y − 1)y

(y2 + y)(y2 + 2y)
=

y2 + y − 1

y3 + 3y2 + 2y
= −1,

[PAF ] =
yz

(x + y)(x + y + z)
=

y

(x + y)(x + y + 1)

=
y

(y2 + 2y − 1)(y2 + 2y)
=

1

y3 + 4y2 + 3y − 2
=

1

−1
= −1.

These calculations also imply that not both x and y are positive. Hence P lies outside

4ABC. Moreover, [PBD] = [PCE] = [PAF ] = −1 = −[ABC]. Hence, the desired

result. The negative sign only indicates that triangles PBD, PCE, and PAF are

oriented opposite to 4ABC.

Comment. Since the equation y3 + 4y2 + 3y − 1 = 0 can be solved to get three real

roots in terms of cos 2π
7

, cos 4π
7

, and cos 6π
7

, we see that there are three real positions

of P lying outside 4ABC.

Solution 2. Let P be a point outside 4ABC as shown in the diagram, and let

D,E, and F be the points at which PA, PB, and PC meet the sides BC, CA, and

AB, respectively. Let [BPD] = [CPE] = [APF ] = x, [ABE] = u, [PAE] = v, and

[BCE] = w, so that [BAD] = x− u− v. We wish to prove that x = [ABC] = u + w.
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A

B CD

P

F

x

w

xu
v

x− u− v

E = AC ∩BP

Now, each of the ratios, BD/DC,CE/EA, and AF/FB can be computed in two

ways, yielding the following equations:

x− u− v

x− v + w
=

x

2x + w
(1)

x

v
=

w

u
(2)

x

x + u + v
=

2x + v

2x + u + v + w
(3)

Equation (1) gives x
2x+w

= u+v
x+v

. Simplifying and substituting for v from (2), we obtain

x2(w − u) = uw(3x + w).

Again, simplifying (3) and using (2), we get

x =
w(w2 − uw − u2)

u(2w + u)
.

Eliminating x from the last two equations, we finally obtain

(w − u)(w + u)(w3 − 3uw2 − 4u2w − u3) = 0.
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But w = u gives v = x (from (2)). So (3) gives x
2x+u

= 3x
3x+2u

; i.e., 2x + u = x + 2u
3

,

which is false since the left side of this is larger than its right side. Clearly, we can

also rule out w + u = 0. Hence, w3 − 3uw2 − 4u2w − u3 = 0, yielding

w3 = u(3w + u)(w + u).

Finally, we have

x =
w3 − uw2 − u2w

2uw + u2
=

u(3w + u)(w + u)− uw(u + w)

u(2w + u)

=
u(u + w)(2w + u)

u(2w + u)
= u + w,

as desired.
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Problem G7. Let O be an interior point of acute triangle ABC. Let A1 lie on BC

with OA1 perpendicular to BC. Define B1 on CA and C1 on AB similarly. Prove

that O is the circumcenter of ABC if and only if the perimeter of A1B1C1 is not less

than any one of the perimeters of AB1C1, BC1A1, and CA1B1.

Solution. If O is the circumcenter of 4ABC, then A1, B1, and C1 are the midpoints

of BC,CA, and AB, respectively, and hence PA1B1C1 = PAB1C1 = PBC1A1 = PCA1B1 ,

where PXY Z denotes the perimeter of 4XY Z.

A B

C

B1

O

α β

γ

C1

A1

A2

γ1γ2

β1

β2

α2

α1

Conversely, suppose that PA1B1C1 ≥ PAB1C1 , PBC1A1 , PCA1B1 . Let

∠CAB = α, ∠CA1B1 = α1, ∠BA1C1 = α2,

∠ABC = β, ∠AB1C1 = β1, ∠CB1A1 = β2,

∠BCA = γ, ∠BC1A1 = γ1, ∠AC1B1 = γ2.

Let A2 be the point of intersection of the lines through B1 and C1, which are parallel

to AB and AC, respectively, as shown in the figure above. Assume that γ1 ≥ α
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and β2 ≥ α. If one of these inequalities is strict, then A1 is an interior point of

4B1C1A2. Hence PA1B1C1 < PA2B1C1 = PAB1C1 , which is a contradiction. If γ1 = α

and β2 = α, then A1 = A2 and therefore B1O ⊥ A1C1 and C1O ⊥ A1B1. Hence O is

the orthocenter (intersection of the altitudes) of 4A1B1C1, and thus OA1 ⊥ B1C1.

Hence B1C1 ‖ BC. This implies that A1, B1, and C1 are the midpoints of BC, CA, and

AB, respectively; i.e., triangles AB1C1, A1B1C1, A1B1C, and A1BC1 are congruent.

Hence, O is the circumcenter of 4ABC. Analogously, the same conclusion holds if

α1 ≥ β and γ2 ≥ β, or β1 ≥ γ and α2 ≥ γ.

Suppose now that none of these cases are satisfied; i.e., it is not true that

γ1 ≥ α and β2 ≥ α,

or

α1 ≥ β and γ2 ≥ β,

or

β1 ≥ γ and α2 ≥ γ.

Suppose without loss of generality that γ1 < α. Then α2 > γ, since γ1 +α2 = π−β =

α+γ. Hence β1 < γ, which implies that γ2 > β. Hence α1 < β, implying that β2 > α.

In conclusion,

γ1 < α < β2, α1 < β < γ2, and β1 < γ < α2.

Since AC1OB1 and A1CB1O are cyclic, we have ∠AOB1 = γ2 and ∠COB1 = α1.

Hence, AO = OB1/ cos γ2 > OB1/ cos α1 = CO. In the same way, the inequalities

γ1 < β2 and β1 < α2 imply that CO > BO and BO > AO, a contradiction.

Comment. The same arguments show that O is the circumcenter of 4ABC if and

only if PA1B1C1 ≤ PAB1C1 , PBC1A1 , PCA1B1 .
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Problem G8. Let ABC be a triangle with ∠BAC = 60◦. Let AP bisect ∠BAC

and let BQ bisect ∠ABC, with P on BC and Q on AC. If AB + BP = AQ + QB,

what are the angles of the triangle?

Solution. Denote the angles of ABC by α = 60◦, β, and γ. Extend AB to P ′ so that

BP ′ = BP , and construct P ′′ on AQ so that AP ′′ = AP ′. Then BP ′P is an isosceles

triangle with base angle β/2. Since AQ+QP ′′ = AB+BP ′ = AB+BP = AQ+QB,

it follows that QP ′′ = QB. Since AP ′P ′′ is equilateral and AP bisects the angle at

A, we have PP ′ = PP ′′.

A B P ′

P ′′

PQ

Claim. Points B, P, P ′′ are collinear, so P ′′ coincides with C.

Proof. Suppose to the contrary that BPP ′′ is a nondegenerate triangle. We have

that ∠PBQ = ∠PP ′B = ∠PP ′′Q = β/2. Thus the diagram appears as below, or

else with P is on the other side of BP ′′. In either case, the assumption that BPP ′′

is nondegenerate leads to BP = PP ′′ = PP ′, thus to the conclusion that BPP ′ is

equilateral, and finally to the absurdity β/2 = 60◦ so α + β = 60◦ + 120◦ = 180◦.
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B

Q

P ′′

P

β/2

β/2

Thus points B, P, P ′′ are collinear, and P ′′ = C as claimed.

Since triangle BCQ is isosceles, we have 120◦− β = γ = β/2, so β = 80 and γ = 40◦.

Thus ABC is a 60-80-40 degree triangle.



Chapter 5

Number Theory

Problem N1. Prove that there is no positive integer n such that, for k = 1, 2, . . . , 9,

the leftmost digit (in decimal notation) of (n + k)! equals k.

Solution. For each positive integer m, define

N(m) =
m

10d(m)−1
,

where d(m) is the number of digits in m. Note that 1 ≤ N(m) < 10. In addition, it

is not hard to show that

N(lm) ≤ N(l)N(m) (1)

for positive integers l and m.

Assume now that n is a positive integer such that for k = 1, 2, . . . , 9, the leftmost

digit of (n + k)! is k. If 2 ≤ k ≤ 9, then (n + k)! = a × 10r for some nonnegative

integer r and some real number a with k < a < k + 1, and (n + k − 1)! = b × 10s

where k − 1 < b < k and s is a nonnegative integer. We then have

1 < N(n + k) = N

(
(n + k)!

(n + k − 1)!

)
=

a

b
<

k + 1

k − 1
≤ 3. (2)

Now N(m) ≥ N(m+1) can only happen if N(m) ≥ 9. Hence it follows from (2) that

1 < N(n + 2) < · · · < N(n + 9) ≤ 5
4
.

57
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Using (1) we then have

N((n + 2)!) ≤ N((n + 1)!)N(n + 2) < 2 · 5
4
,

N((n + 3)!) ≤ N((n + 2)!)N(n + 3) < 2(5
4
)2,

N((n + 4)!) ≤ N((n + 3)!)N(n + 4) < 2(5
4
)3 < 4,

contradicting the assumption that (n + 4)! has leftmost digit of 4.

Therefore there is no positive integer n such that for k = 1, 2, . . . , 9, the leftmost

digit of (n + k)! is k.



59

Problem N2. Consider the system

x + y = z + u

2xy = zu.

Find the greatest value of the real constant m such that m ≤ x/y for any positive

integer solution (x, y, z, u) of the system, with x ≥ y.

Solution 1. Squaring the first equation and then subtracting four times the second,

we obtain

x2 − 6xy + y2 = (z − u)2,

from which (
x

y

)2

− 6

(
x

y

)
+ 1 =

(
z − u

y

)2

. (∗)

The quadratic ω2 − 6ω + 1 takes the value 0 for ω = 3 ± 2
√

2, and is positive for

ω > 3 + 2
√

2. Because x/y ≥ 1 and the right side of (∗) is a square, the left side

of (∗) is positive, and we must have x/y > 3 + 2
√

2. We now show that x/y can be

made as close to 3 + 2
√

2 as we like, so the desired m = 3 + 2
√

2. We prove this by

showing that the term ((z − u)/y)2 in (∗) can be made as small as we like.

To this end, we first find a way to generate solutions of the system. If p is a prime

divisor of z and u, then p is a divisor of both x and y. Thus we may assume, without

loss of generality, that z and u are relatively prime. If we square both sides of the

first equation, then subtract twice the second equation we have

(x− y)2 = z2 + u2.

Thus (z, u, x − y) is a primitive Pythagorean triple, and we may assume that u is

even. Hence there are relatively prime positive integers a and b, one of them even

and the other odd, such that

z = a2 − b2, u = 2ab, and x− y = a2 + b2.
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Combining these equations with x + y = z + u, we find that

x = a2 + ab and y = ab− b2.

Observe that z − u = a2 − b2 − 2ab = (a − b)2 − 2b2. When z − u = 1, we get

the Pell equation 1 = (a − b)2 − 2b2, which has solution a − b = 3, b = 2. By well

known facts, this equation has infinitely many positive integer solutions a− b and b,

and both of these quantities can be made arbitrarily large. It follows that y = ab− b2

can be made arbitrarily large. Hence the right side of (∗) can be made as small as we

like, and the corresponding value of x/y can be made as close to 3 + 2
√

2 as we like.

Note. This solution can be shortened somewhat by using a different method for

generating solutions. Note that if (t, y) satisfies the Pell equation t2 − 2y2 = 1 and

we set x = 3y + 2t, z = 2y + t + 1, u = 2y + t− 1, then x + y = 4y + 2t = z + u and

2xy = 2(3y + 2t)y = 6y2 + 4ty = (2y + t)2 − 1 = zu. It follows as before that there

are solutions with x/y = 3 + 2t/y as close to 3 + 2
√

2 as desired.

Solution 2. As in the first solution, we find that (x − y)2 = u2 + z2. Hence there

is a right triangle with sides a = u and b = z and hypotenuse c = x − y. Let ABC

be such a triangle with AB = c, AC = b, and BC = a. Let I be the incenter of the

triangle, let r be the inradius, and let Z be the point at which the incircle is tangent

to AB. Let CT be the bisector of angle C, with T on AB, let CH be the altitude to

AB, and let C ′ be the midpoint of AB.

C B

A H
Z

T

C ′

I
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Because triangle ABC is right, r = IZ = s − c, where s = (a + b + c)/2 is the

semiperimeter of the triangle. Thus, a + b = 2r + c = 2r + x − y. Using this with

a + b = u + z = x + y we obtain y = r and x = s. We now prove that for any values

of a and b,
x

y
=

s

r
≥ (

√
2 + 1)2. (1)

To show this, observe that CC ′ ≥ CT ≥ CI + IZ, so

s− r

2
=

c

2
≥ (

√
2 + 1)r.

It follows that
s

r
≥ 2

√
2 + 3 = (

√
2 + 1)2,

which establishes (1). Equality holds only if the triangle is isosceles, but in that case

the sides cannot all be of integral length. Thus the inequality in (1) is strict. On the

other hand, CH ≤ CI + IZ so 2rs/c ≤ (
√

2 + 1)r. Hence

x

y
=

s

r
≤ (

√
2 + 1)2

(
c2

4sr

)
. (2)

However,
c2

4sr
=

a2 + b2

2ab
= 1 +

(a− b)2

2ab
. (3)

Because there are infinitely Pythagorean triples (a, b, c) with a−b = 1, it follows from

(3) that c2/(4rs) can be made as close to 1 as we like. It then follows from (1) and

(2) that the maximal value for m is 3 + 2
√

2.

Solution 3 (Sketch). Solve the first equation for u, substitute in the second, then

divide by y2 to get

(
z

y

)2

−
(

z

y

)(
x

y

)
−

(
z

y

)
+ 2

(
x

y

)
= 0.

Let X = x/y and Z = z/y to obtain

Z2 − ZX − Z + 2X = 0. (∗)
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Equation (∗) describes a hyperbola in the (X, Z)-plane. The asymptotes of the hy-

perbola have slope 0 and 1. One branch of the hyperbola lies in the half plane X ≥ 1,

the other in the half plane X < 1. Furthermore, the leftmost point on the branch

in the half plane X ≥ 1 has coordinates (3 + 2
√

2, 2 +
√

2). Thus, if (X, Z) is on

the hyperbola and X ≥ 1, then X ≥ 3 + 2
√

2, and this bound cannot be improved.

Because (∗) has rational coefficients and the hyperbola described by (∗) has a point

with rational coordinates, it has infinitely many points with rational coordinates. In

particular, let r be a rational number, r 6= 0 or 1. Then the line with equation y = rx

intersects the hyperbola described by (∗) in the points (0, 0) and

(
r − 2

r2 − r
,
r2 − 2r

r2 − r

)
.

If 0 < r < 1, then the latter point is on the right branch of the hyperbola, so has

(rational) X coordinate
r − 2

r2 − r
> 3 + 2

√
2. Furthermore, if r is close to

2 +
√

2

3 + 2
√

2
= 2−

√
2,

then this X-coordinate is close to 3 + 2
√

2. Finally, if X and Z are positive rationals

satisfying (∗), then we can find integers x, y, and z with X = x/y and Z = z/y. It

is easy to check that x, y, z, and u = x + y − z are positive integers that satisfy the

equations in the problem statement. Thus if x, y, z and u are positive integers that

satisfy the equations in the statement, and x ≥ y, then x/y > 3+2
√

2. Furthermore,

this lower bound is best possible.
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Problem N3. Let a1 = 1111, a2 = 1212, a3 = 1313, and

an = |an−1 − an−2|+ |an−2 − an−3|, n ≥ 4.

Determine a1414 .

Solution. For n ≥ 2, define sn = |an − an−1|. Then for n ≥ 5, an = sn−1 + sn−2 and

an−1 = sn−2 + sn−3, and hence sn = |sn−1 − sn−3|. Because sn ≥ 0, it follows that

if max{sn, sn+1, sn+2} ≤ T , then sm ≤ T for all m ≥ n. In particular, the sequence

(sn) is bounded. We now prove the following claim.

Claim. If max{si, si+1, si+2} = T ≥ 2 for some i, then max{si+6, si+7, si+8} ≤ T−1.

Proof. If this were not the case, then max{sj, sj+1, sj+2} = T ≥ 2 for j = i, i + 1, i +

2, . . . , i + 6. We show by contradiction that this cannot happen. If the claim were

false, then for j = i, i+1, or i+2 the sequence sj, sj+1, sj+2, . . . would have the form

T, x, y, T − y, . . . ,

with 0 ≤ x, y ≤ T , and max{x, y, T −y} = T . Hence either x = T or y = T or y = 0.

We consider each case:

(a) If x = T , then the sequence has the form T, T, y, T − y, y, . . .

Because max{y, T − y, y} = T we must have y = 0 or y = T .

(b) If y = 0, then the sequence takes the form T, x, 0, T, T − x, T − x, x, . . .

Hence max{x, T − x} = T , so x = 0 or x = T .

(c) If y = T , then the sequence is T, x, T, 0, x, T − x, . . .

We then have max{x, T − x} = T , so x = 0 or x = T .

In each case we find that both x and y must be either 0 or T . In particular, T

must divide each of si, si+1, and si+2, which implies that T divides sn for all n ≥ 2.

However, because s2 = 1212 − 1111 and s4 = 1111 are relatively prime we have a

contradiction. This establishes the claim.
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Now let M = 1414 and N = 1313. From the bound max{s2, s3, s4} ≤ N , we use

the claim to deduce inductively that max{s6N+2, s6N+3, s6N+4} = 1. In particular

sn = 0 or 1 for n ≥ 6N + 2. Hence an = sn−1 + sn−2 may only take on the values 0,

1, or 2 when n ≥ M > 6N + 4. In particular, aM = 0, 1, or 2. Now the recursion for

an implies that

an ≡ (an−1 − an−2) + (an−2 − an−3) ≡ an−1 − an−3 (mod 2).

From the initial values for a1, a2, and a3 it can be easily shown that modulo 2, the

sequence (an) is periodic with period 7, and that a7 is odd. Because 1414 is a multiple

of 7, we conclude that aM = 1.
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Problem N4. Let p ≥ 5 be a prime number. Prove that there exists an integer a

with 1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a + 1)p−1 − 1 is divisible by p2.

Solution. Let S = {1, 2, . . . , p − 1} and let A = {a ∈ S : ap−1 6≡ 1 (mod p2)}. We

prove that |A| ≥ (p− 1)/2, where |A| denotes the number of elements in A. Indeed,

if 1 ≤ a ≤ p− 1, then the Binomial Theorem gives

(p− a)p−1 − ap−1 ≡ −(p− 1)ap−2p 6≡ 0 (mod p2).

Thus at least one of a and p − a is in A. In particular, p − 1 ∈ A because 1 6∈ A.

Now let p = 2k +1, k ≥ 2, and consider the k− 1 pairs of numbers {(2, 3), (4, 5), . . . ,

(2k− 2, 2k− 1)}. If there exists an i, 1 ≤ i ≤ k− 1, such that 2i ∈ A and 2i + 1 ∈ A,

then the conditions of the problem are satisfied. If not, then at least one entry of

each pair (2i, 2i + 1), 1 ≤ i ≤ k− 1, is in A. Because 1 6∈ A and |A| ≥ (p− 1)/2 = k,

exactly one element of each such pair is in A. Consider now the pair (2k− 2, 2k− 1).

If 2k− 1 = p− 2 ∈ A then we are done because p− 1 ∈ A. (Note that this is the

case if p = 5.) If 2k−1 = p−2 6∈ A, then p−3 = 2k−2 ∈ A, so the conditions of the

problem will be satisfied if we show that 2k − 3 ∈ A. Suppose also that 2k − 3 6∈ A.

Because p− 2 6∈ A we have

1 ≡ (p− 2)p−1 ≡ 2p−1 − (p− 1)2p−2p ≡ 2p−1 + p2p−2 (mod p2). (1)

Squaring the first and last expressions in (1), we obtain

4p−1 + p22p−2 ≡ 1 (mod p2). (2)

Also, because 2k − 3 = p− 4 6∈ A,

1 ≡ (p− 4)p−1 ≡ 4p−1 − (p− 1)4p−2p ≡ 4p−1 + p4p−2 (mod p2). (3)

Subtracting the first and last expressions of (3) from (2), we obtain 3p4p−2 ≡ 0

(mod p2), a contradiction. Thus, if p ≥ 7 and p − 2 6∈ A, then p − 4 ∈ A. In

particular, if p− 3 ∈ A, then p− 4 and p− 3 satisfy the conditions of the problem.
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Problem N5. Let a > b > c > d be positive integers and suppose

ac + bd = (b + d + a− c)(b + d− a + c).

Prove that ab + cd is not prime.

Solution 1. Suppose to the contrary that ab + cd is prime. Note that

ab + cd = (a + d)c + (b− c)a = m · gcd(a + d, b− c)

for some positive integer m. By assumption, either m = 1 or gcd(a + d, b − c) = 1.

We consider these alternatives in turn.

Case (i): m = 1. Then

gcd(a + d, b− c) = ab + cd > ab + cd− (a− b + c + d)

= (a + d)(c− 1) + (b− c)(a + 1)

≥ gcd(a + d, b− c),

which is false.

Case (ii): gcd(a + d, b− c) = 1. Substituting ac + bd = (a + d)b− (b− c)a for the

left-hand side of ac + bd = (b + d + a− c)(b + d− a + c), we obtain

(a + d)(a− c− d) = (b− c)(b + c + d).

In view of this, there exists a positive integer k such that

a− c− d = k(b− c),

b + c + d = k(a + d).

Adding these equations, we obtain a + b = k(a + b − c + d) and thus k(c − d) =

(k − 1)(a + b). Recall that a > b > c > d. If k = 1 then c = d, a contradiction. If

k ≥ 2 then

2 ≥ k

k − 1
=

a + b

c− d
> 2,

a contradiction.

Since a contradiction is reached in both (i) and (ii), ab + cd is not prime.
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Solution 2. The equality ac + bd = (b + d + a− c)(b + d− a + c) is equivalent to

a2 − ac + c2 = b2 + bd + d2. (1)

Let ABCD be the quadrilateral with AB = a, BC = d, CD = b, AD = c, ∠BAD =

60◦, and ∠BCD = 120◦. Such a quadrilateral exists in view of (1) and the Law of

Cosines; the common value in (1) is BD2. Let ∠ABC = α, so that ∠CDA = 180◦−α.

Applying the Law of Cosines to triangles ABC and ACD gives

a2 + d2 − 2ad cos α = AC2 = b2 + c2 + 2bc cos α.

Hence 2 cos α = (a2 + d2 − b2 − c2)/(ad + bc), and

AC2 = a2 + d2 − ad
a2 + d2 − b2 − c2

ad + bc
=

(ab + cd)(ac + bd)

ad + bc
.

Because ABCD is cyclic, Ptolemy’s Theorem gives

(AC·BD)2 = (ab + cd)2

It follows that

(ac + bd)(a2 − ac + c2) = (ab + cd)(ad + bc). (2)

(Note. Also straightforward algebra can be used obtain (2) from (1).) Next observe

that

ab + cd > ac + bd > ad + bc. (3)

The first inequality follows from (a−d)(b−c)>0, and the second from (a−b)(c−d)>0.

Now assume that ab + cd is prime. It then follows from (3) that ab + cd and

ac + bd are relatively prime. Hence, from (2), it must be true that ac + bd divides

ad + bc. However, this is impossible by (3). Thus ab + cd must not be prime.

Note. Examples of 4-tuples (a, b, c, d) that satisfy the given conditions are (21, 18, 14, 1)

and (65, 50, 34, 11).
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Problem N6. Is it possible to find 100 positive integers not exceeding 25,000, such

that all pairwise sums of them are different?

Solution. Yes. The desired result is an immediate consequence of the following fact.

Lemma. For any odd prime number p there exist p positive integers not exceeding

2p2 for which the pairwise sums of the integers are all different.

Proof. Consider the p numbers fn = 2pn + (n2), n = 0, 1, 2, . . . , p − 1, where (a2)

denotes the remainder when a2 is divided by p. Because 0 ≤ (a2) ≤ p− 1,

⌊
fm + fn

2p

⌋
= m + n. (∗)

Assume that fm + fn = fk + fl. From (∗) it follows that m + n = k + l and hence

that (m2) + (n2) = (k2) + (l2), that is, m2 + n2 ≡ k2 + l2 (mod p). The conditions

n + m ≡ k + l (mod p), n2 + m2 ≡ k2 + l2 (mod p),

0 ≤ n, m, k, l ≤ p− 1, imply that the pairs {m, n} and {k, l} are the same. Thus, if

{m, n} 6= {k, l}, then fn + fm 6= fk + fl. This completes the proof of the lemma.

Applying the lemma with p = 101, we obtain a set of 101 numbers not exceeding

2·1012 < 25000, all of whose pairwise sums are different.


