Problems

Each problem is worth seven points.

Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.

Suppose that $\angle BCA \geq \angle ABC + 30^\circ$.

Prove that $\angle CAB + \angle COP < 90^\circ$.

Problem 2

Prove that

$$\frac{a}{\sqrt{a^2 + 8 \ b \ c}} + \frac{b}{\sqrt{b^2 + 8 \ c \ a}} + \frac{c}{\sqrt{c^2 + 8 \ a \ b}} \geq 1$$

for all positive real numbers a, b and c.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Problem 4

Let n be an odd integer greater than 1, and let k_1, k_2, \ldots, k_n be given integers. For each of the $n!$ permutations $a = (a_1, a_2, \ldots, a_n)$ of $1, 2, \ldots, n$, let

$$S(a) = \sum_{i=1}^{n} k_i \ a_i.$$

Prove that there are two permutations b and $c, b \neq c$, such that $n!$ is a divisor of $S(b) - S(c)$.
Problem 5

In a triangle ABC, let AP bisect $\angle BAC$, with P on BC, and let BQ bisect $\angle ABC$, with Q on CA.

It is known that $\angle BAC = 60^\circ$ and that $AB + BP = AQ + QB$.

What are the possible angles of triangle ABC?

Problem 6

Let a, b, c, d be integers with $a > b > c > d > 0$. Suppose that

$$ac + bd = (b + d + a - c)(b + d - a + c).$$

Prove that $ab + cd$ is not prime.
Problems with Solutions

Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot of the altitude from A.

Suppose that $\angle BCA \geq \angle ABC + 30^\circ$.

Prove that $\angle CAB + \angle COP < 90^\circ$.

Solution

\begin{itemize}
 \item Solution 1
 \begin{itemize}
 \item Let $\alpha = \angle CAB$, $\beta = \angle ABC$, $\gamma = \angle BCA$, and $\delta = \angle COP$. Let K and Q be the reflections of A and P, respectively, across the perpendicular bisector of BC. Let R denote the circumradius of $\triangle ABC$. Then $OA = OB = OC = OK = R$.
 \end{itemize}
 \item Furthermore, we have $QP = KA$ because $KQPA$ is a rectangle. Now note that $\angle AOK = \angle AOB - \angle KOB = \angle AOB - \angle AOC = 2\gamma - 2\beta \geq 60^\circ$.
 \end{itemize}

It follows from this and from $OA = OK = R$ that $KA \geq R$ and $QP \geq R$. Therefore, using the Triangle Inequality, we have $OP + R = QO + QC > QC = QP + PC \geq R + PC$. It follows that $OP > PC$, and hence in $\triangle COP$, $\angle PCO > \delta$.

Now since $\alpha = \frac{1}{2} \angle BOC = \frac{1}{2} (180^\circ - 2 \angle PCO) = 90^\circ - \angle PCO$, it indeed follows that $\alpha + \delta < 90^\circ$.

\begin{itemize}
 \item Solution 2
 \begin{itemize}
 \item As in the previous solution, it is enough to show that $OP > PC$. To this end, recall that by the (Extended) Law of Sines, $AB = 2R \sin \gamma$ and $AC = 2R \sin \beta$. Therefore, we have
 \[BP - PC = AB \cos \beta - AC \cos \gamma = 2R (\sin \gamma \cos \beta - \sin \beta \cos \gamma) = 2R \sin (\gamma - \beta). \]
 \end{itemize}
 \item It follows from this and from
 \[30^\circ \leq \gamma - \beta < \gamma < 90^\circ \]
 that $BP - PC \geq R$. Therefore, we obtain that $R + OP = BO + OP > BP \geq R + PC$, from which $OP > OC$, as desired.
 \end{itemize}
Solution 3

We first show that \(R^2 > CP \cdot CB \). To this end, since \(CB = 2R \sin \alpha \) and \(CP = AC \cos \gamma = 2R \sin \beta \cos \gamma \), it suffices to show that \(\frac{1}{4} > \sin \alpha \sin \beta \cos \gamma \). We note that \(1 > \sin \alpha = \sin(\gamma + \beta) = \sin \gamma \cos \beta + \sin \beta \cos \gamma \) and \(\frac{1}{4} \leq \sin(\gamma - \beta) = \sin \gamma \cos \beta - \sin \beta \cos \gamma \). Since \(30^\circ \leq \gamma - \beta < 90^\circ \). It follows that \(\frac{1}{4} > \sin \beta \cos \gamma \) and that \(\frac{1}{4} > \sin \alpha \sin \beta \cos \gamma \).

Now we choose a point \(J \) on \(BC \) so that \(CJ \cdot CP = R^2 \). It follows from this and from \(R^2 > CP \cdot CB \) that \(CJ > CB \), so that \(\angle OBC > \angle OJC \). Since \(OC \cdot CJ = PC \cdot CO \) and \(\angle JCO = \angle OCP \), we have \(\triangle JCO \cong \triangle OCP \) and \(\angle OJC = \angle POC = \delta \). It follows that \(\delta < \angle OBC = 90^\circ - \alpha \) or \(\alpha + \delta < 90^\circ \).

Solution 4

On the one hand, as in the third solution, we have \(R^2 > CP \cdot CB \). On the other hand, the power of \(P \) with respect to the circumcircle of \(\triangle ABC \) is \(BP \cdot PC = R^2 - OP^2 \). From these two equations we find that

\[
OP^2 = R^2 - BP \cdot PC > PC \cdot CB - BP \cdot PC = PC^2,
\]

from which \(OP > PC \). Therefore, as in the first solution, we conclude that \(\alpha + \delta < 90^\circ \).

Problem 2

Prove that

\[
\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \geq 1
\]

for all positive real numbers \(a, b \) and \(c \).

Solution

First we shall prove that

\[
\frac{a}{\sqrt{a^2 + 8bc}} \geq \frac{\frac{a}{3^\frac{1}{2}}}{\frac{a^\frac{1}{2}}{3^\frac{1}{2}} + \frac{b^\frac{1}{2}}{3^\frac{1}{2}} + \frac{c^\frac{1}{2}}{3^\frac{1}{2}}},
\]

or equivalently, that

\[
\left(\frac{a^\frac{1}{2}}{3^\frac{1}{2}} + \frac{b^\frac{1}{2}}{3^\frac{1}{2}} + \frac{c^\frac{1}{2}}{3^\frac{1}{2}}\right)^2 \geq \frac{a}{3^\frac{1}{2}}(a^2 + 8bc).
\]

The AM-GM inequality yields

\[
\left(\frac{a^\frac{1}{2}}{3^\frac{1}{2}} + \frac{b^\frac{1}{2}}{3^\frac{1}{2}} + \frac{c^\frac{1}{2}}{3^\frac{1}{2}}\right)^2 - \left(\frac{a^\frac{1}{2}}{3^\frac{1}{2}}\right)^2 = \left(\frac{b^\frac{1}{2}}{3^\frac{1}{2}} + \frac{c^\frac{1}{2}}{3^\frac{1}{2}}\right)\left(\frac{a^\frac{1}{2}}{3^\frac{1}{2}} + \frac{a^\frac{1}{2}}{3^\frac{1}{2}} + \frac{b^\frac{1}{2}}{3^\frac{1}{2}} + \frac{c^\frac{1}{2}}{3^\frac{1}{2}}\right)
\geq 2\frac{b^\frac{1}{2}}{3^\frac{1}{2}} \cdot \frac{c^\frac{1}{2}}{3^\frac{1}{2}} \cdot 4\frac{a^\frac{1}{2}}{3^\frac{1}{2}} \cdot \frac{b^\frac{1}{2}}{3^\frac{1}{2}} \cdot \frac{c^\frac{1}{2}}{3^\frac{1}{2}}
= 8a \frac{2}{3} b c.
\]

Thus
\[
\left(a^{\frac{4}{5}} + b^{\frac{4}{5}} + c^{\frac{4}{5}} \right)^2 \geq \left(a^{\frac{4}{5}} \right)^2 + 8 a^{\frac{2}{5}} b c = a^{\frac{2}{5}} (a^2 + 8 b c),
\]

so

\[
\frac{a}{\sqrt{a^2 + 8 b c}} \geq \frac{a^{\frac{4}{5}}}{a^{\frac{2}{5}} + b^{\frac{2}{5}} + c^{\frac{2}{5}}}
\]

Similarly, we have

\[
\frac{b}{\sqrt{b^2 + 8 c a}} \geq \frac{b^{\frac{4}{5}}}{a^{\frac{2}{5}} + b^{\frac{2}{5}} + c^{\frac{2}{5}}}
\]

and

\[
\frac{c}{\sqrt{c^2 + 8 a b}} \geq \frac{c^{\frac{4}{5}}}{a^{\frac{2}{5}} + b^{\frac{2}{5}} + c^{\frac{2}{5}}}
\]

Adding these three inequalities yields

\[
\frac{a}{\sqrt{a^2 + 8 b c}} + \frac{b}{\sqrt{b^2 + 8 c a}} + \frac{c}{\sqrt{c^2 + 8 a b}} \geq 1.
\]

Comment. It can be shown that for any \(a, b, c > 0 \) and \(\lambda \geq 8 \), the following inequality holds:

\[
\frac{a}{\sqrt{a^2 + \lambda b c}} + \frac{b}{\sqrt{b^2 + \lambda c a}} + \frac{c}{\sqrt{c^2 + \lambda a b}} \geq \frac{3}{\sqrt{1 + \lambda}}.
\]

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest.

- Each contestant solved at most six problems.
- For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three boys.

Solution

- **Solution 1**

 We introduce the following symbols: \(G \) is the set of girls at the competition and \(B \) is the set of boys, \(P \) is the set of problems, \(P(g) \) is the set of problems solved by \(g \in G \), and \(P(b) \) is the set of problems solved by \(b \in B \). Finally, \(G(p) \) is the set of girls that solve \(p \in P \) and \(B(p) \) is the set of boys that solve \(p \). In terms of this notation, we have that for all \(g \in G \) and \(b \in B \),

 \[
 (a) \quad |P(g)| \leq 6, \quad |P(b)| \leq 6, \quad (b) \quad P(g) \cap P(b) \neq \emptyset.
 \]

 We wish to prove that some \(p \in P \) satisfies \(|G(p)| \geq 3 \) and \(|B(p)| \geq 3 \). To do this, we shall assume the contrary and reach a contradiction by counting (two ways) all ordered triples \((p, q, r)\) such that \(p \in P(g) \cap P(b) \). With \(T = \{(p, g, b) : p \in P(g) \cap P(b)\} \), condition (b) yields
\[|T| = \sum \sum_{b \in B} |P(g) \cap P(b)| \geq |G| \cdot |B| = 21^2. \] \hspace{1cm} (1)

Assume that no \(p \in P \) satisfies \(|G(p)| \geq 3 \) and \(|B(p)| \geq 3 \). We begin by noting that

\[\sum_{p \in P} |G(p)| = \sum_{g \in G} |P(g)| \leq 6 |G| \quad \text{and} \quad \sum_{p \in P} |B(p)| \leq |B|. \] \hspace{1cm} (2)

(Note. The equality in (2) is obtained by a standard double-counting technique. Let \(\chi(g, p) = 1 \) if \(g \) solves \(p \) and \(\chi(g, p) = 0 \) otherwise, and interchange the orders of summation in \(\sum_{p \in P} \sum_{g \in G} \chi(g, p). \) Let

\[P_+ = \{ p \in P : |G(p)| \geq 3 \}, \]
\[P_- = \{ p \in P : |G(p)| \leq 2 \}. \]

Claim. \(\sum_{p \in P_-} |G(p)| \geq |G|; \) thus \(\sum_{p \in P_+} |G(p)| \leq 5 |G| \). Also \(\sum_{p \in P_+} |B(p)| \geq |B| \); thus \(\sum_{p \in P_-} |B(p)| \leq 5 |B| \).

Proof. Let \(g \in G \) be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply that \(g \) solves some problem \(p \) that is solved by at least \([21/6] = 4 \) boys. By assumption, \(|B(p)| \geq 4 \) implies that \(p \in P_- \), so every girl solves at least one problem in \(P_- \). Thus

\[\sum_{p \in P_-} |G(p)| \geq |G|. \] \hspace{1cm} (3)

In view of (2) and (3) we have

\[\sum_{p \in P_+} |G(p)| = \sum_{p \in P} |G(p)| - \sum_{p \in P_-} |G(p)| \leq 5 |G|. \]

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a problem \(p \in P_+ \). Thus \(\sum_{p \in P_+} |B(p)| \geq |B| \), and the calculation proceeds as before using (2). \(\square \)

Using the claim just established, we find

\[|T| = \sum_{p \in P} |G(p)| \cdot |B(p)| \]
\[= \sum_{p \in P_+} |G(p)| \cdot |B(p)| + \sum_{p \in P_-} |G(p)| \cdot |B(p)| \]
\[\leq 2 \sum_{p \in P_+} |G(p)| + 2 \sum_{p \in P_-} |B(p)| \]
\[\leq 10 |G| + 10 |B| = 20 \cdot 21. \]

This contradicts (1), so the proof is complete.
Solution 2

Let us use some of the notation given in the first solution. Suppose that for every $p \in P$ either $|G(p)| \leq 2$ or $|B(p)| \leq 2$. For each $p \in P$, color p red if $|G(p)| \leq 2$ and otherwise color it black. In this way, if p is red then $|G(p)| \leq 2$ and if p is black then $|B(p)| \leq 2$. Consider a chessboard with 21 rows, each representing one of the girls, and 21 columns, each representing one of the boys. For each $g \in G$ and $b \in B$, color the square corresponding to (g, b) as follows: pick $p \in P(g) \cap P(b)$ and assign p’s color to that square. (By condition (b), there is always an available choice.) By the Pigeonhole Principle, one of the two colors is assigned to at least $[441/2] = 221$ squares, and thus some row has at least $[221/21] = 11$ black squares or some column has at least 11 red squares.

Suppose the row corresponding to $g \in G$ has at least 11 black squares. Then for each of 11 squares, the black problem that was chosen in assigning the color was solved by at most 2 boys. Thus we account for at least

$$\sum_{i=1}^{g} k_{i} a_{i}.$$

In view of condition (a), g solves only these problems. But then at most 12 boys solve a problem also solved by g, in violation of condition (b).

Hence some $p \in P$ satisfies $|G(p)| \geq 3$ and $|B(p)| \geq 3$.

Problem 4

Let n be an odd integer greater than 1, and let k_1, k_2, \ldots, k_n be given integers. For each of the $n!$ permutations $a = (a_1, a_2, \ldots, a_n)$ of $1, 2, \ldots, n$, let

$$S(a) = \sum_{i=1}^{n} k_{i} a_{i}.$$

Prove that there are two permutations b and c, $b \neq c$, such that $n!$ is a divisor of $S(b) - S(c)$.

Solution

Let $\sum S(a)$ be the sum of $S(a)$ over all $n!$ permutations $a = (a_1, a_2, \ldots, a_n)$. We compute $\sum S(a)$ mod $n!$ two ways, one of which depends on the desired conclusion being false, and reach a contradiction when n is odd.

First way. In $\sum S(a), k_1$ is multiplied by each $i \in \{1, \ldots, n\}$ a total of $(n-1)!$ times, once for each permutation of $\{1, \ldots, n\}$ in which $a_1 = i$. Thus the coefficient of k_1 in $\sum S(a)$ is

$$(n-1)! (1 + 2 + \cdots + n) = (n+1)!/2.$$

The same is true for all k_i, so

$$\sum S(a) = \frac{(n+1)!}{2} \sum_{i=1}^{n} k_{i}. \quad (1)$$

Second way. If $n!$ is not a divisor of $S(b) - S(c)$ for any $b \neq c$, then each $S(a)$ must have a different remainder mod $n!$. Since there are $n!$ permutations, these remainders must be precisely the numbers $0, 1, 2, \ldots, n! - 1$. Thus

$$\sum S(a) \equiv \frac{(n! - 1)n!}{2} \mod n!. \quad (2)$$

Combining (1) and (2), we get

$$\frac{(n+1)!}{2} \sum_{i=1}^{n} k_{i} \equiv \frac{(n! - 1)n!}{2} \mod n!. \quad (3)$$
Now, for n odd, the left side of (3) is congruent to 0 modulo $n!$, while for $n > 1$ the right side is not congruent to 0 ($n! - 1$ is odd). For $n > 1$ and odd, we have a contradiction.

Problem 5

In a triangle ABC, let AP bisect $\angle BAC$, with P on BC, and let BQ bisect $\angle ABC$, with Q on CA.

It is known that $\angle BAC = 60^\circ$ and that $AB + BP = AQ + QB$.

What are the possible angles of triangle ABC?

Solution

Denote the angles of ABC by $\alpha = 60^\circ$, β, and γ. Extend AB to P' so that $BP' = BP$, and construct P'' on AQ so that $AP'' = AP'$. Then $BP'P$ is an isosceles triangle with base angle $\beta/2$. Since $AQ + QP'' = AB + BP' = AB + BP = AQ + QB$, it follows that $QP'' = QB$. Since $AP'P''$ is equilateral and AP bisects the angle at A, we have $PP'' = PP'$.

Claim. Points B, P, P'' are collinear, so P'' coincides with C.

Proof. Suppose to the contrary that BPP'' is a nondegenerate triangle. We have that $\angle PBQ = \angle PP'B = \angle PP''Q = \beta/2$. Thus the diagram appears as below, or else with P is on the other side of BP''. In either case, the assumption that BPP'' is nondegenerate leads to $BP = PP'' = PP'$, thus to the conclusion that BPP'' is equilateral, and finally to the absurdity $\beta/2 = 60^\circ$ so $\alpha + \beta = 60^\circ + 120^\circ = 180^\circ$.

http://imo.wolfram.com/
Thus points B, P, P'' are collinear, and $P'' = C$ as claimed. □

Since triangle BCQ is isosceles, we have $120^\circ - \beta = \gamma = \beta / 2$, so $\beta = 80^\circ$ and $\gamma = 40^\circ$. Thus ABC is a 60-80-40 degree triangle.

Problem 6

Let a, b, c, d be integers with $a > b > c > d > 0$. Suppose that

$$a c + b d = (b + d + a - c) (b + d - a + c).$$

Prove that $a b + c d$ is not prime.

Solution

- **Solution 1**

 Suppose to the contrary that $a b + c d$ is prime. Note that

 $$a b + c d = (a + d) c + (b - c) a = m \cdot \gcd(a + d, b - c)$$

 for some positive integer m. By assumption, either $m = 1$ or $\gcd(a + d, b - c) = 1$. We consider these alternatives in turn.

 Case (i): $m = 1$. Then

 $$\gcd(a + d, b - c) = a b + c d > a b + c d - (a - b + c + d)$$

 $$= (a + d) (c - 1) + (b - c) (a + 1)$$

 $$\geq \gcd(a + d, b - c),$$

 which is false.

 Case (ii): $\gcd(a + d, b - c) = 1$. Substituting $a c + b d = (a + d) b - (b - c) a$ for the left-hand side of $a c + b d = (b + d + a - c) (b + d - a + c)$, we obtain

 $$(a + d) (a - c - d) = (b - c) (b + c + d).$$

http://imo.wolfram.com/
In view of this, there exists a positive integer \(k \) such that

\[
\begin{align*}
 a - c - d &= k(b - c), \\
 b + c + d &= k(a + d).
\end{align*}
\]

Adding these equations, we obtain \(a + b = k(a + b - c + d) \) and thus \(k(c - d) = (k - 1)(a + b) \). Recall that \(a > b > c > d \). If \(k = 1 \) then \(c = d \), a contradiction. If \(k \geq 2 \) then

\[
2 \geq \frac{k}{k - 1} = \frac{a + b}{c - d} > 2,
\]

a contradiction.

Since a contradiction is reached in both (i) and (ii), \(a \ b \ + \ c \ d \) is not prime.

\[\blacktriangleleft\]

Solution 2

The equality \(a \ c + b \ d = (b + d + a - c)(b + d - a + c) \) is equivalent to

\[
a^2 - a \ c + c^2 = b^2 + b \ d + d^2.
\]

(1)

Let \(ABCD \) be the quadrilateral with \(AB = a \), \(BC = d \), \(CD = b \), \(AD = c \), \(\angleBAD = 60^\circ \), and \(\angleBCD = 120^\circ \). Such a quadrilateral exists in view of (1) and the Law of Cosines; the common value in (1) is \(BD^2 \). Let \(\angleABC = \alpha \), so that \(\angleCDA = 180^\circ - \alpha \). Applying the Law of Cosines to triangles \(ABC \) and \(ACD \) gives

\[
a^2 + d^2 - 2 \ a \ d \ \cos \alpha = A \ C^2 = b^2 + c^2 + 2 \ b \ c \ \cos \alpha.
\]

Hence \(\cos \alpha = (a^2 + d^2 - b^2 - c^2)/(a \ d + b \ c) \), and

\[\begin{align*}
A \ C^2 &= a^2 + d^2 - a \ d \
\frac{a^2 + d^2 - b^2 - c^2}{a \ d + b \ c} = \frac{(a \ b + c \ d)(a \ c + b \ d)}{a \ d + b \ c}.
\end{align*}\]

Because \(ABCD \) is cyclic, Ptolemy's Theorem gives

\[
(A \ C \cdot B \ D)^2 = (a \ b + c \ d)^2
\]

It follows that

\[
(a \ c + b \ d)(a^2 - a \ c + c^2) = (a \ b + c \ d)(a \ d + b \ c).
\]

(2)

(Note. Straightforward algebra can also be used obtain (2) from (1).) Next observe that

\[
a \ b + c \ d > a \ c + b \ d > a \ d + b \ c.
\]

(3)

The first inequality follows from \((a - d)(b - c) > 0\), and the second from \((a - b)(c - d) > 0\).

Now assume that \(a \ b + c \ d \) is prime. It then follows from (3) that \(a \ b + c \ d \) and \(a \ c + b \ d \) are relatively prime. Hence, from (2), it must be true that \(a \ c + b \ d \) divides \(a \ d + b \ c \). However, this is impossible by (3). Thus \(a \ b + c \ d \) must not be prime.

Note. Examples of 4-tuples \((a, b, c, d) \) that satisfy the given conditions are \((21, 18, 14, 1)\) and \((65, 50, 34, 11)\).